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1. Introduction 
Earth’s biogeochemical cycles result largely from a complex interaction of individual microscopic 
organisms through growth, competition and cooperation (Falkowski et al. 2008), and there is a 
growing need to incorporate microbial processes in earth system biogeochemistry and 
ecosystem models (Wieder et al. 2015). It is natural and customary then to simulate 
biogeochemical processes by modeling the growth and interaction of functionally distinct guilds 
(e.g., Le Quere et al. 2005).  However, modeling individuals or guilds to understand and predict 
systems-level biogeochemistry (BGC) introduces many challenges due to the extensive amount 
of information that is necessary to parameterize and constrain such models, such as organism 
maximum specific growth rates, substrate and prey affinities, growth efficiencies, etc. (Vallino 
2000, Ward et al. 2010). Even with extensive observational data, food web models often exhibit 
chaotic behavior, similar to models for weather, which limits their ability to forecast very far into 
the future (Becks et al. 2005, Beninca et al. 2008).  While understanding fine scale food web 
dynamics is important (for food production, pest outbreaks, resource management, etc), there is 
also a need to develop biogeochemical models that can forecast over longer time periods, but at 
the expense of forecast details. This is similar to climate modeling versus weather modeling. 

To circumvent some of the forecast challenges of food-web focused biogeochemistry models, 
we have been developing ecosystem models that focus instead on functional representation 
and energy dissipation.  It has been postulated that complex systems will likely organize in such 
a manner that maximizes the rate of entropy production (Paltridge 1975, Dewar 2003, 
Martyushev & Seleznev 2006, Niven 2009), which is equivalent to maximizing the dissipation of 
useful energy.  A hurricane is a classic example of system-level organization that facilitates the 
destruction of the thermal gradient between the atmosphere and ocean. The maximum entropy 
production (MEP) conjecture has been applied successfully to many systems (see Kleidon & 
Lorenz 2005, Dewar et al. 2014), and the concept readily extends to understanding ecosystems.  
If food (i.e., energy) is available, it is expected that organisms will adapt, immigrate or evolve to 
consume it.  Of course, organisms are just packets of food themselves, no different than an 
inanimate pile of protein and carbohydrate.  Contrary to conventional wisdom, living organisms 
are not low entropy organized structures (Morrison 1964). To utilize all food, ecosystems 
develop a sufficient number of trophic levels so that effectively all available energy is simply 
dissipated as heat via respiration, as biomass cannot accumulate indefinitely, but rather attains 
some pseudo-steady state (PSS), or climax state (Odum 1969). Once PSS is attained, 
ecosystems maximize free energy dissipation, which is the very definition of MEP.  Interestingly, 
this is precisely what Lotka (1922) stated nearly 100 years ago, yet the principle has largely 
gone unexploited, even though it is a useful organizing concept, especially if the objective is to 
understand how ecosystems will respond to perturbations over long time scales relative to their 
internal food web dynamics (see Vallino & Algar 2016).  

Our approach to date has been to remove focus on modeling individuals and instead represent 
the collective action of the microbial community as a distributed metabolic network (Vallino 
2003); “distributed” in the sense that different organisms contribute different metabolic functions 
and no single organism expresses all metabolic capabilities.  To determine which metabolic 
pathways in the network should be up- or down-regulated, we construct an optimal allocation 
problem based on maximizing entropy production, but constrained by reaction kinetics and 
stoichiometry (Vallino 2010), so the approach accounts for both thermodynamics and kinetics, 
which are both important (Pascal & Pross 2014).  

One disadvantage of our current MEP-based approach is the computational overhead 
associated with solving a sequential optimal control problem (see Vallino et al. 2014).  Recently, 
we have been exploring Darwinian-based modeling approaches (Follows & Dutkiewicz 2011) to 
find approximate solutions to the MEP optimization problem.  As discussed in the Section 3, this 
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approach appears promising, but its success depends on the consumer-resource (C-R) 
connectivity of the food web that must be used for the Darwinian approach.  While extensive 
theoretical, experimental and observational research concerning C-R dynamic exists (Abrams & 
Ginzburg 2000, McCann 2011, Allesina & Tang 2012, Mougi & Kondoh 2012), much of the work 
has been based on macroscopic, multicellular organisms, because the ability to decipher viral, 
bacterial, archaeal and protist food web structures was not experimentally tractable until 
recently.  By combining high-throughput amplicon gene sequencing with stable isotope probing 
(SIP), we can now experimentally explore the nature of microbial food webs and thereby 
improve our representation of these ecosystem networks in our MEP-inspired models. 
Furthermore, we can test whether microbial foods webs function identically to their macroscopic 
counterparts, or whether the law of large numbers, afforded by microbial communities, allows 
them to function differently. Consequently, this proposal seeks to elucidate consumer-resource 
connectivity in microbial systems using experimental approaches based on stable isotope 
probing to advance C-R theory for these ecosystems and to provide experimental guidance for 
our Darwinian-based MEP modeling efforts. Improved understanding of how microbial 
communities function and organize trophic connectivity is critical to understanding the 
foundation of all ecosystems and microbial systems are particularly useful for testing and 
advancing theoretical ideas (Lawton 1995, Jessup et al. 2005, Benton et al. 2007). 
 

2. Objectives 
 Determine if microbial food webs are highly interconnected or if they form tightly coupled 

predatory-prey sub-communities that are weakly interconnected 

 Determine the impact of food web connectivity on ecosystem function, in particular 
configuration effectiveness in energy dissipation. 

 Advance Darwin-based MEP models by providing information on the nature of microbial 
food-web architectures that are the foundations of all ecosystems. 

 Determine if food web connectivity and community dynamics in microbial systems 
function similarly to macroscopic communities or if microbial communities, with their high 
diversity and easy dispersal, operate differently. 
 

3. Background 
Conventional biogeochemistry models use a literal representation of ecosystems in that the 
objective is to model organism growth and their predator-prey interactions (Friedrichs et al. 
2007).  The biogeochemistry then arises as a consequence of tracking C, N, P and other 
elements of interest associated with the underlying consumer-resource (C-R) dynamics.  This 
approach is quite useful, as there is more or less a one-to-one mapping between observations, 
such as phytoplankton concentration, and model variables.  While these models have been and 
will continue to be very useful, capturing C-R interactions over long time scales is notoriously 
challenging.  MEP-based models take a different perspective, in that energy gradients are 
placed as the primary drivers and the system is allowed to organize to dissipate them.  Because 
MEP is a thermodynamic approach, the details of the underlying dissipaters are not described, 
only general constraints around them need to be specified.  Perhaps Lineweaver and Egan 
(2008) summarize this perspective mostly succinctly with: This represents a  paradigm shift  
from “we eat food” to “food has produced us to eat it”. 

Under this paradigm, we can view microbial systems simply as a collection of catalysts that 
increase and decrease in abundance so as to maximize the rate of energy dissipation subject to 
stoichiometric, kinetic and informational constraints.  The skill then is to accurately represent 
these constraints with mathematical expressions that lend themselves to simulation modeling, 
but use parameters judiciously. For stoichiometric constraints, we use a distributed metabolic 
network (Vallino 2003) where pathways consist of energy liberating redox reactions (such as 
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CH2O+ O2 → CO2 + H2O) coupled to biosynthetic reactions that produce “catalyst”, S, with 
chemical composition CH𝛼O𝛽N𝛾P𝛿  (such as CH2O+ 𝛾NH3 + 𝛿H2PO4 +⋯ → S).  Both of these 

sub-reactions require catalyst to proceed and can be combined into one overall reaction as 
given by 
 

 CH2O+ 𝜀𝑖𝛾𝑖NH3 + 𝜀𝑖𝛿𝑖H3PO4 +⋯+ (1 − 𝜀𝑖)O2

S𝑖
→ 𝜀𝑖S𝑖 + (1 − 𝜀𝑖)H2CO3,  

 
(1) 

where 𝜀𝑖 controls whether chemical energy is simply dissipated as heat (𝜀𝑖 → 0) or is 
conservatively transformed into catalyst (𝜀𝑖 → 1). From an MEP perspective, the game is to 
synthesize just enough catalyst to maximize substrate oxidation, but no more, since catalyst is 
food too. We use variations of the above reaction to represent all metabolic functions present, 
such as photosynthesis, denitrification, sulfate reduction as well as predation that keeps 
biomass from accumulating and recycles nutrients.  

To represent reaction kinetic constraints, we use a modified Monod equation of the form,  
 

 𝑟𝑖 = 𝜈𝑖
∗𝜀𝑖
2𝐹𝑇(∆𝑟𝑖𝐺𝑟𝑖)𝑐S𝑖∏(

𝑐𝑗

𝑐𝑗 + 𝜅𝑖
∗𝜀𝑖
4)

𝑗

, (2) 

where 𝑐S𝑖 and 𝑐𝑗 are catalyst and substrate concentrations, respectively, and the maximum 

reaction rate, 𝜈∗𝜀𝑖
2𝐹𝑇(∆𝑟𝑖𝐺𝑟𝑖), is parameterized by 𝜀𝑖 and a thermodynamic driver 𝐹𝑇(∆𝑟𝑖𝐺𝑟𝑖) (Jin 

& Bethke 2003) derived from the Gibbs free energy of the overall reaction, ∆𝑟𝑖𝐺𝑟𝑖 that depends 

on the value of 𝜀𝑖.  The half saturation “constant”, 𝜅∗𝜀𝑖
4, is also parameterized by 𝜀𝑖.  These 

functional forms where chosen so that as 𝜀𝑖 varies between 0 and 1, Eq. (2) can capture 
bacteria growing under oligotrophic conditions (i.e., doubling times >> 1 day) to those observed 

under ideal laboratory conditions (doubling times < 20 min).  Consequently, one variable, 𝜀𝑖, 
controls stoichiometric, kinetic and thermodynamic constraints.  Informational constraints are 
introduced by the type and stoichiometry of the metabolic reactions used to represent the 
community, such as Eq. (1), as well as by the efficiency of the catalyst (reaction rate per unit 
mass of catalyst) and its substrate affinity embodied in 𝜈𝑖

∗ and 𝜅𝑖
∗, respectively. In most cases 

we have used the same values of 𝜈𝑖
∗ and 𝜅𝑖

∗ for all reactions in the metabolic network.  

As mentioned above, we have employed sequential optimal control to determine how 𝜀𝑖 change 
over time to maximize entropy production (Vallino et al. 2014). This approach has been 
successful at modeling methanotrophic communities (Vallino et al. 2014) and metabolic 
switching between denitrification, anammox and dissimilatory nitrate reduction to ammonium 
pathways in anaerobic systems (Algar & Vallino 2014).  In addition, the MEP-based approach 
provides a mathematical distinction between living versus abiotic systems (Vallino 2010, Vallino 
et al. 2014). Namely, abiotic systems maximize instantaneous entropy production, while living 
systems use information acquired by evolution, culled by natural selection and stored in the 
metagenome to maximize entropy production over time using temporal strategies, such as 
circadian rhythms and resource storage, and anticipatory control (Mitchell et al. 2009).  
Similarly, we have found that coordination over space (i.e., cooperation via infochemicals and 
multicellularity) can enhance free energy dissipation (Vallino 2011).  However, these discoveries 
have required solving computationally difficult problems that do not lend themselves to 2D and 
3D problems.  

To circumvent computational overhead associated with the formal optimization problem, we 
have begun investigating approximate solutions to the MEP optimization using a Darwinian 
approach (Follows & Dutkiewicz 2011).  In this case, instead of having just one catalyst per 

reaction and finding the optimal value of 𝜀𝑖 for each functional reaction, we populate the model 
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with hundreds or more catalysts, S𝑖, for each reaction, 
then randomly assign fixed values of 𝜀𝑖 to each.  The 
catalysts then compete in classic consumer-resource 
fashion; however, in this case we must also provide 
some information on the connectivity between resource, 
consumer and predator.  When we run simulations with 
full connectivity, we find the solutions are quite stable as 
expected from C-R theory (McCann 2011), but the 
community does not effectively utilize all available 
energy (Fig. 1), so it does not locate the known MEP 
solution obtained from optimization (Vallino 2011).  
However, if we specify strongly connected C-R bindings 
that are highly compartmentalized (i.e., each consumer 
has a unique prey, akin to bacteria-phage associations), 
then we obtain very unstable C-R dynamics as expected 
from C-R theory (McCann 2011), but interestingly, the 
community as a whole locates the known MEP solution 
and effectively dissipates available energy (Fig. 2).   

In the original work on food web network analysis, May 
(1972) showed that large, randomly constructed food 
webs are unstable.  Ever since that initial analysis, now referred to as May’s Paradox (Johnson 
et al. 2014), there have been numerous publications that identify configurations that are stable 
(e.g., Allesina & Tang 2012).  Because the notion of “stability” is so problematic in ecology 
(Grimm & Wissel 1997), most mathematical analyses concern linear stability analysis around an 
operating point, and focus on assessing eigenvalues of the associated Jacobian matrix, as this 
is a rich field in mathematical analysis (e.g., Seydel 1988).  As a result of this emphasis, 
unstable C-R dynamics are often culled from solution space, such as in qualitative network 
analysis (Melbourne-Thomas et al. 2012), because collective wisdom dictates that complex 
natural communities should be stable (MacArthur 1955).  Yet, this wisdom is based on 
observations largely associated with macroscopic organisms whose local abundances are low 
and immigration and dispersal are limited, so instabilities 
are likely detrimental, and also are unlikely to be 
exhibited on human timescales.  On the contrary, 
microbial systems contain more than 109 organisms L-1 
or 1012 kg-1 in aquatic or terrestrial soils, respectively 
(Whitman et al. 1998), that disperse readily, and these 
small volumes can contain upwards of 10,000 species or 
more when the rare biosphere is considered (Sogin et al. 
2006, Roesch et al. 2007). For these systems that have 
short characteristic timescales relative to humans, 
stability may not be a defining feature, and there is 
support for this.   

In our own long-term methanotrophic experiment 
(Fernandez-Gonzalez et al. 2016), we observed rather 
rapid turnover of the dominate methanotrophs (Fig. 3). 
Even though we deeply sampled the community 
(~13,000 16S rRNA genes/sample), the times series 
showed a continuous succession of methanotrophs 
originating from the rare biosphere (sometimes below 
detection), growing in abundance to occupy as much as 

Fig. 1. Food web consisting of generalist 

consumers exhibit classic stability (top) but 
do not extract all available energy (low 

entropy production,-dot, bottom). 
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Fig. 2. Specialized consumer-resource 

chains exhibit unstable dynamics (top) but 
are able to maximize free energy dissipation 

(or entropy production, -dot, bottom). 
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85% of the total community, then returning to the rare 
biosphere as a new methanotroph ascended to 
temporary dominance (Fig. 3).  Yet, during the entire 
period, methane oxidation rate (and entropy 
production) remained constant (Vallino et al. 2014, 
Fernandez-Gonzalez et al. 2016).  Similarly, Graham 
et al. (2007) observed fairly stable nitrification rates 
that were supported by unstable community 
dynamics, Fernández et al. (1999) found an unstable 
methanogenic community but stable 
methanogenesis, and Benincà et al. (2008) observed 
chaotic plankton communities in long term 
experiments as well. While stability may be a 
compelling objective for food web analysis, it may be 
the wrong solution from an energy dissipation 
perspective, at least for microbial ecosystems, where 
May’s (1972) conclusions may not be paradoxical. 
This leads us to the following hypothesis. 
 

4. Hypothesis 
To maximize dissipation of potential energy sources, microbial food webs evolve and 
organize so that the main flows of energy and mass take place through tightly coupled 
consumer-resource pairs that specialize in their food/prey choice and are weakly 
interconnected, but this produces unstable community dynamics (Figs. 2 and 3). 

 

5. Experimental Approach 
Overview 
We propose to experimentally test that the flow of energy and mass through microbial food 
webs occurs primarily through numerous tightly coupled predator-prey chains that are weakly 
interconnected. Our experimental approach is not only intended to test our hypothesis, but 
results we obtain will facilitate development of our Darwin-based MEP model discussed below in 
Section 7. We will use 3 L chemostats (i.e, a bioreactor where sterile medium is continuously 
added and the culture is removed at the same rate) inoculated with a natural microbial 
community collected from a nearby coastal pond (John’s Pond, Mashpee MA).  The chemostats 
will be supplied with a defined minimal medium that includes five different substrates (methanol, 
acetate, ethanol, xylose and glucose) to support carbon and energy needs of bacteria. These 
substrates were chosen because they are typically found in aquatic and marine environments 
(Repeta et al. 2002).  Based on our hypothesis, we expect that sub-communities of bacteria, 
archaea, protists and viruses will be supported on each substrate separately.  All sub-
communities will be present at the same time, but will be only weakly interconnected.  During 
the course of the time series, we will periodically label each substrate with 13C, which will then 
be incorporated into only those sub-communities that are actively utilizing that particular 
substrate.  While a given substrate is labeled, samples will be withdrawn over time for RNA 
stable isotope probing (RNA-SIP), which will be combined with high throughput amplicon 
sequencing to determine the identity and trophic level of those organisms (bacteria, archaea, 
eukaryote, and viruses) reliant on the labeled substrate.  During the experiment, only the 13C 
label of the substrates will be sequentially changed, while medium composition and all operating 
conditions will be maintained constant throughout the duration of the approximately 5 month 
experiment.   
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Fig. 3 Dominate OTU's (>5%) during long-term 

methanotrophy experiment. While bacterial 
population was unstable, methane oxidation rate 
was constant.   Note, y-axis break at 5% and 
change in log scale to highlight rare biosphere. 
OTU: operational taxonomic unit. (Fernandez-
Gonzalez et al. 2016) 
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Substrate Labeling 
To illustrate the nature of the expected labeling 
dynamics of the sub-community, and to facilitate 
experimental design, a conventional three 
compartment model was constructed consisting of 
substrate (𝑠), bacteria (𝑏) and grazer (𝑔) state 
variables connected in a linear food chain, 𝑠 → 𝑏 → 𝑔, 
and placed in a chemostat at a dilution rate of 1 d-1 
with feed substrate concentration constant at 100 μM 
C, where the dilution rate, 𝐷 = 𝐹/𝑉 (d-1) , is the 

chemostat feed flow rate, 𝐹 (L d-1), divide by its liquid 
volume 𝑉 (L).  Growth of bacteria on substrate and 
growth of grazer on bacteria were modeled using 
standard Holling type II, or Monod, kinetics (Holling 
1965). Three additional state variables were added to 
track 13C in the three compartments (𝑠13, 𝑏13, 𝑔13). At 
day 15 in the simulation, substrate in the feed was 
labeled with 100% 13C, then returned to background 
13C abundance (1%) five days later at day 20. As 
usual for these types of models, 6 parameters were 
required for the Monod kinetic equations, and 
changing their values greatly altered substrate and 
community dynamics.  For instance, some 
parameterizations resulted in steady-state 
concentrations of 𝑠, 𝑏 and 𝑔 following an initial startup 
transient (not shown), while others produced 
predator-prey oscillations (i.e., limit cycles), as show 
in Fig. 4 (top). Regardless of the parameterization (except those that caused washout of 
𝑏, or 𝑏 and 𝑔), we found the 13C label dynamics to be rather insensitive to the parameterization, 
even when the communities exhibited classic limit cycles (Fig. 4, bottom).  Even labeling the 
substrate during the transient startup period produced similar results (not shown).  In general, 
we observed a very rapid labeling of the substrate (< 1 d) due to low substrate concentrations in 
the chemostat relative to the feed, followed by the bacteria and archaea, then the grazer 
(microbial or viral) (Fig. 4, bottom).  Once the 13C label in the feed was returned to background 
abundance, the simulations showed a similar de-labeling of the three state variables. Because 
of the time delay in labeling higher trophic levels, trophic relationships between organisms can 
be decerned based on the delay in which 13C label is either incorportated (on step-up), or lost 
(on step-down) from each organism. The time delays are strongely dependent on the 
characteristic time scale of the system, which in this case is driven by the feed dilution rate. At a 
dilution rate, 𝐷, of 1 d-1, the residence time of the chemostat is 1/𝐷, or 1 d and at 5/𝐷, output 
concentrations should be at 99.3% (5 e-foldings) of the feed concentration (exactly so for inert 

tracers). Consequently, if we constructed a times series from samples collected at ∆𝑡 =
0, 6, 24 and 48 hrs (Fig. 4, dashed lines) after the step-up during the simulation, we would be 
able to infer the linear food web, 𝑠 → 𝑏 → 𝑔 based on the reconstructed curves and associated 
delays (Fig. 4, bottom, gray dots). Furthermore, by comparing the magnitude of the 13C label 
incorportated into an organism versus the level in the feed, we can determine the extent to 
which an organism is relient on a given substrate or prey item.  For instance, in a simulation with 
more than one substrate, if bacteria only reached 50% 13C enrichment, then we know that the 
bacteria received half of its food from another, unlabeled, substrate (simulation not shown).  

Fig. 4. (top) Substrate, bacteria and grazer 

dynamics in chemostat at 1.0 d
-1

 dilution rate. 
(bottom) Enrichment of 

13
C label in substrate, 

bacteria and grazer pools following addition of 
label starting at day 15 and ending at day 20. 
Note, bottom plot starts at day 14. 
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If our experimental ecosystem was composed of only 
macroscopic organsisms that could be readily 
separated based on size or by inspection (e.g., 
Hughes et al. 2000), then determining the trophic 
level and substrate/prey preference for a particular 
organism from its 13C label would be straight forward, 
but this is not possible with microorgansims that 
cannot be distingished by simple techniques. A 
different, better resolving, technique must be 
employed, such as RNA-SIP. 

RNA-Stable Isotope Probing 
We will employ RNA stable isotope probing (RNA-
SIP) (Manefield et al. 2002, Aoyagi et al. 2015) to 
determine the identity of the bacterial and archaeal 
community (primary consumers via 16S rRNA), and 
their eukaryotic (18S rRNA) and viral (g23 capsid 
protein) predators that are associated with each 
carbon source. Stable isotope probing (SIP) experiments consist of adding substrates labeled 
with heavy isotopes (typically 13C and/or 15N) to a community environmental sample (water, soil, 
sediments).  Those organisms that consume the substrate, as well as their predators, 
incorporate the isotopes into cellular biomarkers, such as DNA, mRNA, rRNA, protein or 
phospholipid fatty acids (PFLAs) (Lueders et al. 2016).  The labeled biomarkers can then be 
separated by ultracentrifugation and identified to determine members of the community that are 
actively incorporating the labeled substrate (Abraham 2014).  For instance, RNA-SIP was used 
to identify protistan grazers of cyanobacteria by adding 13C-labeled Prochlorococcus and 
Synechococcus to a marine community (Frias-Lopez et al. 2009). Similarly, Lueders et al. 
(2006) added 13C-labeled E. coli to soil followed by RNA-SIP to demonstrate that the primary 
consumers of E. coli were three distinct groups of predatory bacteria.  Mauclaire et al. (2003) 
were able to track the flow of 13C toluene into bacteria and a subsequent protistan grazer, and 
were able to calibrate a simple substrate-prey-predator model.  Murase et al. (2012) detected 
the incorporation of 13C labeled dried rice callus into three fungal groups, as well as into ‘fungus-
like’ protists in rice field soils. DNA-SIP in soils has also been used to detect genes associated 
with bacteriophage (Li et al. 2013) and cyanophage (Lee et al. 2012) capsid protein synthesis. 
Recently, PI Huber used 13CO2-labelling coupled to RNA-SIP with metatransciptomics to 
eulicidate both the carbon fixation and metabolic pathways of active chemolithotrophic 
communities at a deep-sea hydrothermal vent (Fortunato & Huber 2016). However, since we 
are interested in elucidating food web connectivity and not metabolic function, we will use RNA-
SIP with targeted amplicon sequencing to identify bacteria, archaea, eukaryotes, and viruses. 
High throughput amplicon sequencing (Huber et al. 2007, Aoyagi et al. 2015) of RNA from our 
chemostats will be combined with Stable Isotope Switching (Maxfield et al. 2012, Verastegui et 
al. 2014) to test our hypothesis. Although care must be taken in working with RNA, RNA-SIP 
has two main advantages over DNA-SIP; RNA-SIP is more sensitive at detecting the active 
members of a community (Manefield et al. 2002), and RNA-SIP produces buoyant density 
distributions that are more Gaussian than DNA-SIP (Youngblut & Buckley 2014). 

Stable isotope probing is dependent on the ability to separate 13C-RNA (or biomarker of choice) 
from 12C-RNA over a density gradient via ultracentrifugation. However, even if a sample 
contained RNA that was 100% 12C-RNA sequences, the resulting graph of RNA concentration 
versus buoyant density (BD) would not produce a thin single peak at a specific BD value even if 
there were no concentration driven diffusion, but rather it would produce a Gaussian-like 
distribution, as shown in Fig. 5 (solid gray line). When RNA contains a mixture of 12C and 13C, as 
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Fig. 5. Idealized results of RNA-SIP from pre-

labeled (solid lines) and post-labeled (dashed 
lines) samples from chemostat experiment. Gray 
lines represent total RNA, while color lines reflect 
RNA from individual organisms or viruses. 
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occurs after the addition of a 13C label, two overlapping Gaussian-like curves are produced (Fig. 
5, dashed gray line). The Gaussian-like distribution results because RNA (and DNA) from 
different organisms have different GC content, which alters their BD. Consequently, a 12C 
control experiment is often conducted alongside the 13C label experiment so that the variation in 
GC content between organisms can be accounted for (Youngblut & Buckley 2014).  For DNA-
SIP, a control is even more important. DNA BD distributions can be very non-Gaussian, 
because DNA fragments containing the target gene, such as rRNA, will be of variable length 
that also alters the GC content, but this does not occur with RNA-SIP (Youngblut & Buckley 
2014).  With RNA-SIP, the overall BD distribution, with or without 13C (Fig. 5, gray lines), is a 
superposition of many hundreds of underlying Gaussian distributions that the RNA from each 
organism contributes (Fig. 5, blue, red and green lines).  Under natural 13C abundances (~1%), 
RNA from different organisms will occupy different locations along the BD axis due to different 
GC content, even though they have the same 13C content (Fig. 5, blue, red and green solid 
lines).  By collecting multiple samples along the BD axis (see Experimental Details below), 
individual contributions of each organism’s RNA to the overall BD distribution can be extracted 
mathematically (Zemb et al. 2012). We will divide the BD axis into 12 fractions, and each will be 
amplified and sequenced.  Consequently, we will produce a database of BD values for mRNA 
and rRNA sequences prior to the addition of the 13C labels (i.e, Fig. 5, blue, red and green solid 
lines), so we will not have to run a third control unlabeled chemostat.  

During our 13C labeling experiment, the amount of 13C label in any organism will vary as a 
function of time since label addition and the fraction of its food uptake that is associated with the 
labeled substrate pool (Fig. 4, bottom). We will be able to determine the extent of label 
incorporation in each organism by measuring how far that organisms’ marker gene moves along 
the BD axis compared to its value in the control database. Consider Fig. 5, which shows one 
organism (Red) taking up 100% of the label, versus another organism (Blue) that is 50% 
enriched, while a third organism (Green) did not consume label.  This extent of RNA enrichment 
obtained from the BD position will allow us to extract information about an organism’s trophic 

level and its dependency on the labeled substrate pool as described above in Substrate Labeling. 
If the community is extremely dynamic (such as Fig. 3), it is possible that an organism only 
becomes significant during a 13C labeling period, but was not present in the sample used to 
produce the BD database.  Consequently, we will take and archive samples over the duration of 
the experiment that can be later searched for an important organism that is missing from the BD 
database, but we don’t expect this to occur due to the short labeling period (Fig. 4, bottom).  At 
the end of Section 7, we also discuss issues associated with dynamic communities and cross-
feed raised by pre-proposal reviewers. 
 

6. Experimental Details 
Chemostat Operation 
We will use duplicate Bellco Glass 3 L chemostats (working volume) operated in the dark at 
20°C in a Conviron environmental chamber.  Chemostats will be supplied with medium at a 
dilution rate of 1.0 d-1 (or 3 L d-1) and sparged at a gas flow rate of 30 mL min-1 controlled by 
MKS mass flow controllers using 0.2μm filtered compress air to maintain aerobic conditions for 
all experiments. Medium will be added to the chemostat in two feeds.  Feed 1 will consist of a 
defined base mineral salts medium consisting of 8 μM K2HPO4, 55 μM KNO3, 100 μM MgSO4, 
100 μM CaCl2, 100 μM NaCl) plus trace elements (final concentrations: 18.50 μM FeCl3, 0.49 
μM H3BO3, 0.13 μM CoCl2, 0.10 μM CuSO4, 0.35 μM ZnSO4, 0.16 μM MnSO4, 0.12 μM 
Na2MoO4, 0.08 μM NiCl2, 0.1 mM HCl), which we have found supports a diverse microbial 
community (Fernandez-Gonzalez et al. 2016). Feed 1 medium will be prepared in large volume 
and kept in the dark in a 200 L polyethylene drum, which will provide medium for approximately 
33 days (6 L d-1 for two chemostats).  Feed 1 medium will not be sterilized because it contains 
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no carbon/energy sources, but it 
will be passed through a 0.2 μm 
filter before entering the 
chemostat.  Feed 2 medium will 
consist of only the five substrates 
(Table 1), but will be prepared at 
100 times concentration strength, 
kept in a glass 2 L media bottle, 
and autoclaved for sterility.  Feed 
1 will be fed at 2970 mL d-1, and 
Feed 2 will be fed at 30 mL d-1 
using high precision Masterflex 
peristaltic pumps.  Concentration 
of each substrate in the Feed 2 medium will provide the same chemical potential based of Gibbs 
free energy of reaction for complete oxidation (Table 1).  The C, N and P concentrations in the 
combined media are based on an assumed 20% growth efficiency of the bacteria and C:N and 
C:P ratios of 5 and 32, respectively (Vrede et al. 2002). The medium is designed to be slightly P 
limited.  Chemostat pH will be actively controlled at 7.0 using a computer interfaced to a 
Hamilton EasyFerm Plus Arc probe and peristaltic pump connected to a NaOH reservoir, while 
dissolved oxygen will be monitored with a Hamilton VisiFerm DO Arc probe. Gas concentrations 
of CO2 and O2 in the chemostat headspace will be measured every hour via a closed gas 
sampling loop that contains a Nafion gas dryer and an Oxigraf O2 and CO2 laser diode 
absorption spectrometer. A Valco selector valve under computer control will allow sampling of 
both chemostats as well as calibration of the gas analyzer at every sample point. CO2 
production and O2 consumption rates are readily determined from gas flow rate and gas 
concentrations, and will be monitored along with DO to determine when chemostats have 
stabilized and the 13C labeling experimental can begin; however, as discussed in Section 5. 
Substrate Labeling, a true steady state is not required for the 13C labeling experiment.  

Inoculum 
The inoculum for the chemostats will be collected from the aphotic zone of John’s Pond 
(Falmouth, MA) and coarsely filtered (100 µm). Chemostats will start with 100% pond water and 
be allowed to acclimate for 1 to 2 days before chemostat operation commences.  John’s pond is 
a costal pond located on Cape Cod that has been studied for more than a decade as part of our 
Semester in Environmental Science Undergraduate Program (see Broader Impacts).  While 
food web studies involving microorganisms have often used defined communities (e.g., Naeem 
& Li 1997, Jiang & Morin 2004, Vasseur & Fox 2009), for our hypothesis a defined community 
would be inappropriate because it would lack the rare biosphere (Sogin et al. 2006), so would 
not be representative of natural microbiomes that have extensive functional diversity (Lynch & 
Neufeld 2015). Our hypothesis is contingent on the ability of a microbial community to rapidly 
replace or activate metabolic function needed to maximize energy extraction and dissipation 
with micro-changes in the local environment, as exhibited in Fig. 3 (Fernandez-Gonzalez et al. 
2016). It is the presence of the rare biosphere that may allow microbial systems to function 
differently than macroscopic communities.  A crude analogy might be an analog versus a digital 
system, where the later can exhibit extinction but the former cannot. 

Characterization Experiment, Year 1 

Following inoculation, the chemostats will be allowed to operate for a few weeks to allow 
communities to adapt and organize. Once the chemostats appear sufficiently stable from on-line 
DO, CO2 and O2 gas measurements, we will conduct a trial 13C labeling experiment using 
glucose. At time 0, media in Feed 2 will be replaced with an identical media, except it will be 
prepared with 99% 13C6 labeled glucose instead of glucose with natural 13C abundance.   

Table 1. Substrate concentrations in the combined media that 
yield the same free energy as glucose. Reaction free energies 
are for complete oxidation at 293 K and pH 6.8 at standard 
concentrations (1 M). Free energies of formation were 
calculated from Alberty (2003). 

 
Compound 

∆𝒓𝑮° 
(kJ mol

-1
) 

Glucose 
Equivalence 

Energy Equiv. 

Conc. (mM) 

Methanol -713.1 0.2425 206.1 
Acetate -877.5 0.2985 167.5 
Ethanol -1358. 0.4618 108.3 
Xylose -2463. 0.8376 59.69 
Glucose -2940. 1 50.00 

Total C  -- -- 1356 
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Following the start of the 13C-glucose addition, we will withdraw samples for RNA-SIP and 
amplicon sequencing at 0 h, 6 hr, 24 hr, 48 hr and 96 hr.  We will also collect DI13C samples 
more frequently and will be run near real time in our mass spec. facility, thereby providing 
critical information on 13C pool labeling dynamics and allow us to alter our sampling times.  The 
objective of this initial experiment is to confirm the sampling frequency determined from our 
modeling (Fig. 4). These samples will also be used to perfect our RNA-SIP sampling and 
analysis protocols for our system.  This experiment and sample analysis will be conducted in 
year 1 and will be used to adjust protocols for our main experiment in year 2. 

Main Labeling Experiment, Year 2 

In year 2, the chemostats will be started again and allowed to acclimate as described above.  
Once pseudo-steady state operation is achieved, we will define a start time and take an initial 
sample for sequencing (not RNA-SIP), and for nutrients.  Samples will be taken again at days 2, 
and 4, then at day 5 the main 13C labeling experiment will commence. The pre-label samples 
will be used to characterized community dynamics as well as provide samples for our BD 
database if needed.  We will start by labeling methanol, then sample for RNA-SIP, DI13C, virus, 
bacteria and eukaryote abundances, nutrients, and substrates (see Section 8) at 0 hr, 6 hr, 24 
hr and 48 hr following the changeover of Feed 2 to labeled methanol. Actual sample points will 
be based on the Characterization Experiment in year 1. Although we expect sampling to be 
completed by two days, there will be enough 13C labeled medium to run for two weeks.  After 
sampling, Feed 2 will be returned to natural 13C abundance and the chemostat will be allowed to 
washout the label for approximately 1 week (Fig. 4).  We will confirm the absence of label via 
DI13C measurement.  Once the first substrate labeling is complete, we will begin with the second 
and continue until all five substrates (Table 1) have been sequentially labeled.  We expect the 
entire experiment to last approximately 5 mo. (1 mo. per substrate).  The rest of Year 2 and in 
Year 3, samples will be analyzed, including bioinformatics, and model (Section 7) will be 
developed based on results from this experiment.  

RNA-Stable Isotope Probing and Sequencing 
At each time point, ~500 mL of water will be filtered through 0.22 μm Sterivex filters (Millipore) 
and flash frozen in liquid nitrogen and stored at − 80°C. RNA will be extracted using the 
mirVana miRNA isolation kit (Ambion) with an added bead-beating step using RNA PowerSoil 
beads (MoBio, Carlsbad, CA, USA). RNA will be DNase treated using the Turbo-DNase kit 
(Ambion). Gradient preparation, isopycnic centrifugation, and gradient fractionation will be 
performed as described in Fortunato and Huber (2016) and Lueders (2010). Briefly, for each 
gradient sample, 750 ng of RNA will be mixed with CsTFA, formamide, and gradient buffer 
solution at a median density of ~ 1.80 g mL-1. Samples will be spun in a VTi 65.2 vertical rotor 
(Beckman Coulter) at 37 000 rpm. at 20°C for 64 h using an Optima L-80 XP ultracentrifuge 
(Beckman Coulter). Each gradient will be fractionated into 12 tubes of approximately 410 μL 
each and the refractory index of each fraction measured to determine density. RNA will be 
precipitated with isopropanol and RNA concentration of each fraction determined using the 
RiboGreen quantification kit (Invitrogen) and a Gemini XPS plate reader (Molecular Devices, 
Sunnyvale, CA, USA). Double-stranded complementary DNA will be constructed from all 
fractions of all samples and analyzed for amplification of 16S rRNA genes (bacteria + archaea), 
18S rRNA genes (eukaryotes), and g23 capsid protein genes (viruses). For all density fractions 
with positive amplification, sequencing will be carried out a MiSeq platform, with 96 amplicons 
per run. 

The universal bacterial/archaeal 16S rRNA gene primer set as described in Caporaso et al. 
(2012) and used by the Earth Microbiome Project (EMP) will be used for paired-end sequencing 
on the Illumina MiSeq platform. To assess eukaryotic diversity, either the v4 or v9 region of the 
18S rRNA genes will be amplified and sequenced using paired-end sequencing on the Illumina 
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MiSeq platform. While v9 has routinely been used as part of the EMP and other studies 
(Amaral-Zettler et al. 2009, Caporaso et al. 2012), newly designed primers focusing on the V4-
V6 region of the 18S rDNA have recently been developed for both short reads (150bp) and 
longer reads (400bp) (Hugerth et al. 2014). Finally, although universal primer sets do not exist 
to capture the full diversity of viruses in a single environment (Adriaenssens & Cowan 2014), we 
plan to target the g23 major capsid protein that captures T4-related members of Myoviridae 
(Tétart et al. 2001). Primer sets designed for this group have been widely applied to diverse 
marine and aquatic environments and capture a large amount of viral diversity (Filée et al. 2005, 
Comeau & Krisch 2008, Chow & Fuhrman 2012, Needham et al. 2013). Li et al (2013) recently 
applied a g23 capsid protein gene set using PCR-DGGE in a DNA-SIP experiment to examine 
the role of T4-type bacteriophage in carbon cycling in rice rhizospheres, with results showing 
the viral community changed throughout the incubation period, dependent upon soil conditions.  

After sequencing, raw reads will be demultiplexed based on the combination of index and 
barcode.  The QIIME pipeline (Caporaso et al. 2010) will be used for OTU clustering and to 
carry out other analyses. Reads will be clustered into operational taxonomic units (OTUs) at 
96% sequence identity level and will assigned a taxonomy using the Global Assignment of 
Sequence Taxonomy (GAST, Huse et al. 2008). Oligotyping of dominant groups will also be 
performed in order to explore ecological patterns at fine scale as described in Eren et al. (2013). 
Statistical analysis to compare communities from different fractions and experiments will be 
performed with QIIME, PRIMER and PERMANOVA+ (Primer-E Ltd., Plymouth, United 
Kingdom) and R. Differences between treatments and time will be tested with PERMANOVA 
tests including pair-wise comparisons between individual samples. 
 
7. Darwin-based MEP modeling  
In addition to elucidating the nature of microbial food webs and their comparison to existing 
theory derived from macroscopic food webs, experimental results will also be used to develop 
and test our MEP-based biogeochemistry model.  In particular, our focus will be on refining the 
food web connectivity and number of trophic levels needed to capture observations (i.e., Fig. 1 
versus Fig. 2).  The results from our 13C labeling combined with RNA-SIP will be used to guide 
construction the metabolic network architecture.  To facilitate model comparison to 
observations, 13C tracking through substrates and organisms 
will be added (e.g., Fig. 4 bottom).  We expect that the 
predator-prey connectivity uncovered from our RNA-SIP 
experiments will allow us to develop a generic framework 
that can be used in modeling any microbially dominated 
processes and information obtained will advanced C-R 
theory for microbial systems. We note that there is a 
considerable, and impressive, body of theoretical research 
that concerns constructing synthetic connectivity matrices for 
understanding classic macroscopic food webs, such as the 
Cascade Model (Cohen & Newman 1985), the Niche Model 
(Williams & Martinez 2000), the Phylogenetic Niche Model 
(Cattin et al. 2004) and recently the Preferential Preying 
Model that underlies the trophic coherence concept 
(Johnson et al. 2014). However, we must emphasize the 
differences between these works and our objectives and 
underlying assumptions.  As mentioned above, much of the 
existing work is founded on deriving food web connectivity 
matrices from linear stability analysis by considering 
eigenvalues of the Jacobian matrix around a fixed point, but 

Fig. 6. Nature of microbial food web 

where matrix 𝐁 governs bacterial 

consumption of substrates and matrix 𝐆 

governs all predation, including viruses 
and predatory bacterial, all shown as 𝒈𝒊 
here. 
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one of our underlying assumptions, based on observations and simulations, is that microbial 
ecosystems may be inherently unstable, so a Jacobian analysis is inappropriate.  More 
importantly, we are placing emphasis on networks that maximize dissipation of free energy (i.e., 
MEP) and not on those that exhibit linear stability criteria or other assumed properties of the 
underlying food web. This is not to say past and present work is not relevant here, but we are 
not proceeding along the same path.  We will certainly take advantage of theory and tools that 
have been developed, as appropriate, in deciphering microbial food web architectures. Some of 
the details of our modeling are presented below.  

Here, we define an 𝑛𝑠 × 1 vector 𝐬 to represent all the substrates, an 𝑛𝑏 × 1 vector 𝐛 to 
represent all bacteria and archaea that consume substrates and an 𝑛𝑔 × 1 vector 𝐠 to represent 

all grazers (i.e., protists, viruses and predatory bacteria) that consume bacteria and other 
grazers.  For our experiments, the substrates are methanol (𝑚), acetate (𝑎), ethanol (𝑒), xylose 

(𝑥) and glucose (𝑔), so that 𝐬 = [𝑠𝑚, 𝑠𝑎 , 𝑠𝑒 , 𝑠𝑥 , 𝑠𝑔]
𝑇
.  

Given the stoichiometric composition of bacteria 𝑏𝑖 as CH𝛼O𝛽N𝛾P𝛿, the metabolic reaction 

governing its growth is then given by, 
 

 
𝑟𝑏𝑖:  𝐵𝑖,1𝐶𝐻4𝑂 + 𝐵𝑖,2

1

2
𝐶2𝐻4𝑂2 + 𝐵𝑖,3

1

2
𝐶2𝐻6𝑂 + 𝐵𝑖,4

1

5
𝐶5𝐻10𝑂5 + 𝐵𝑖,5

1

6
𝐶6𝐻12𝑂6 + 𝜀𝑏𝑖𝛿𝐻3𝑃𝑂4

+ (1 − 𝜀𝑏𝑖)𝑂2  
𝑏𝑖
→ 𝜀𝑏𝑖𝑏𝑖 + (1 − 𝜀𝑏𝑖)𝐻2𝐶𝑂3 

(3) 

 

where 𝐁 is a 𝑛𝑏 × 5 matrix of substrate coefficients that specifies which combination of the 5 

substrates are used by bacteria 𝑏𝑖. Matrix rows are normalized so that ∑ 𝐵𝑖,𝑗
5
𝑗=1 = 1 for each 

bacteria 𝑏𝑖. For example, if bacteria 𝑏𝑖 just used acetate, then 𝐵𝑖 = [0 1 0 0 0], while if it used all 
substrates then 𝐵𝑖 = [0.2 0.2 0.2 0.2 0.2]. The growth efficiency parameter, 𝜀𝑏𝑖, determines the 

fraction of total substrate that is converted to bacteria or is oxidized to CO2 and water; it also 
governs the reaction kinetics (see below). Each bacteria 𝑏𝑖 will be assigned a random value of 
𝜀𝑏𝑖, so that some will grow fast, but have poor affinity for substrates, while others will grow 

slowly, but have a high affinity for substrates. Choice of 𝜀𝑏𝑖 also impacts the magnitude of 

energy dissipation (i.e., entropy production). Since the chemostat medium is designed to be 
phosphate limited, we will only consider P in addition to C in the stoichiometry as given by Eq. 
(3).  
 
Similarly, for a grazer, 𝑔𝑖, the equation for growth on bacteria 𝐛 as well as on other grazers, 𝐠, 
including cannibalism, is given by, 
 

 
𝑟𝑔𝑖:  𝐺𝑖,1𝑏1 + 𝐺𝑖,2𝑏2 +⋯+ 𝐺𝑖,𝑛𝑏𝑏𝑛𝑏 + 𝐺𝑖,𝑛𝑏+1𝑔1 +⋯+ 𝐺𝑖,𝑛𝑏+𝑛𝑔𝑔𝑛𝑔 + (1 − 𝜀𝑔𝑖)𝑂2  

𝑔𝑖
→ 𝜀𝑔𝑖𝑔𝑖

+ (1 − 𝜀𝑔𝑖)(𝐻2𝐶𝑂3 + 𝛿𝐻3𝑃𝑂4) 
(4) 

 
where the 𝑛𝑔 × (𝑛𝑏 + 𝑛𝑔) coefficient matrix 𝐆 determines which bacteria and grazers are 

consumed by grazer 𝑔𝑖, and is also row normalized so that ∑ 𝐺𝑖,𝑗
𝑛𝑏+𝑛𝑔
𝑗=1

= 1. Like bacteria, 

grazers will also be assigned random values of 𝜀𝑔𝑖. The connectivity of the above food web is 

illustrated in Fig. 6.  The configuration of the connectivity matrix 𝐆 permits all possible integer 

and fractional trophic structures, ranging from a single trophic level (Fig. 7a) up to (𝑛𝑏 + 𝑛𝑔) 

levels if we consider cannibalism (Fig. 7c). Once 𝐁 and 𝐆 are populated, when can use standard 

matrix properties to characterize them, such as number of links, 𝐿, mean trophic level, 
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connectance, 𝐿/(𝑛𝑏 + 𝑛𝑔)
2
, as well as others that can be compared to macroscopic food webs 

(Dunne et al. 2004).  

Reaction rates for Eqs. (3) and (4) follow our generalized Monod equation that captures a broad 
range of growth types (Vallino 2011), 
 

 𝑟𝑏𝑖 = 𝜈
∗𝜀𝑏𝑖
2 [𝑏𝑖] (

[𝐁𝑖𝐬]

[𝐁𝑖𝐬] + 𝜅
∗𝜀𝑏𝑖
4 )(

[𝐻3𝑃𝑂4]/𝛿

[𝐻3𝑃𝑂4]/𝛿 + 𝜅
∗𝜀𝑏𝑖
4 ) (1 − 𝑒

Δ𝑟𝐺𝑏𝑖/(𝑅𝑇𝜒𝑏𝑖)), (5) 

 
 

 𝑟𝑔𝑖 = 𝜈
∗𝜀𝑔𝑖
2 [𝑔𝑖] (

[𝐆𝑖𝐩]

[𝐆𝑖𝐩] + 𝜅
∗𝜀𝑔𝑖
4 ) (1 − 𝑒

Δ𝑟𝐺𝑔𝑖/(𝑅𝑇𝜒𝑔𝑖)), (6) 

 
where 𝐁𝑖 and 𝐆𝑖 are the ith rows of the corresponding 
matrices, brackets, [ ], represent  concentrations, 

𝐩 = [𝐛𝑇 𝐠𝑇]𝑇 is the (𝑛𝑏 + 𝑛𝑔) × 1 vector of all potential 

prey and the last term accounts for the thermodynamic 
driver (Jin et al. 2013) based on calculated reaction free 
energies of Eqs. (3), Δ𝑟𝐺𝑏𝑖, and (4), Δ𝑟𝐺𝑔𝑖, and substrate 

activities, and 𝜀𝑔𝑖 and 𝜀𝑔𝑖, respectively.  

The objective for modeling is to determine properties 

matrices 𝐁 and 𝐆 that best match the flow of 13C label 
through the metabolic network based on the trophic 
hierarchies derived from 13C breakthrough curves for 
each dominate OTU resolved by RNA-SIP as discussed 
in Section 5 (Figs. 4 and 5). In addition, we will compare 
the model output to observations of overall O2 
consumption, and CO2 and 13CO2 production in the 
chemostats, and uptake rates of the five substrates from 
HPLC results.  We will also calculate and compare 
entropy production from the model to that measured in 
the chemostats, which is obtained from substrate respiration rates predominately (Vallino 2011, 
Vallino et al. 2014).  As a starting point for populating the connectivity matrices 𝐁 and 𝐆, we will 
used  synthetic matrix construction techniques based on existing models, such as the Niche 
Model and others mentioned above. Entropy production will serves as a means to cull models 
(consider Figs. 1 vs 2. in terms of entropy production) as well as means to direct matrix 
construction.    

In our experimental design, we acknowledge some concerns raised by preproposal reviewers 
regarding potential cross-feeding (Rosenzweig et al. 1994).  For example, if the labeled 
substrate was only partially metabolized and the end metabolite, such as acetate, was 
excreated then consumed by a different bacteria, then our interpretation would be to classify the 
second, cross-feeding bacteria, as a bacterial predator. We may be able to detect some cross-
feeding if it results in some accumulation of a metabolic by-product we detect in our HPLC 
measurements, but this is unreliable.  To reliably detect cross-feeding would require more 
sophsticated metabolimics measurements, but this is outside of the scope of our project. 
However, cross-feeding misclassification should not significantly alter the constructed networks 
ability to predict the overall dyanmics and partitioning of substrates through isolated sub-
networks proposed in our hypothesis.  The objective of our modeling is to capture the estential 
properties of microbial food webs so that we can employ Darwin-like modeling approaches to 

Fig. 7. Three matrix 𝐆 examples for a 

system with one bacteria and three 
predators.  Note, maximum number of 

trophic levels is (𝒏𝒃 + 𝒏𝒈) as shown in 

example c.  

a.

b.

c.
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solve MEP problems, which our current design should achieve.      

Another concern of reviewers regarded dynamic communities, such as we observed in the 
methanotrophic system (Fig. 3).  In this case, simulations show the microbial dynamics do not 
affect the labeling experiment or our modeling thereof, because an organism at low abundance 
at the start of a labeling period still becomes enriched even if it is does not become dominate 
until near the end of the labeling period; the breakthrough curve is the same (Fig. 4, bottom, 
blue line). However, since we may not detect it until hour 48 (or 24), it will just show up at 100%, 
but that can be interpreted correctly. 
 

8. Routine Methods 
The Ecosystems Center, MBL, has considerable experience and equipment for measuring 
environmental constituents. Concentration of the following nutrients will be measured in each 
sample collected from the chemostats: NO2

- + NO3
- (via Lachat QuikChem 8000 autoanalyzer); 

NH4
+ (Solorzano 1969); PO4

3+  (Murphy & Riley 1962); dissolved inorganic carbon (DIC) (via 
UIC Coulometrics (Johnson et al. 1993) or GC); particulate organic carbon (POC) and nitrogen 
(PON) (on Perkin Elmer 2400 CHN elemental analyzer); DAPI counts of bacteria, archaea, and 
eukaryotes (Porter & Feig 1980) and SYBR Green for viruses (Noble & Fuhrman 1998). DI13C 
will be measured in-house at our Stable Isotope Laboratory using Continuous Flow-Isotope 
Ratio Mass Spectrometer, but DI13C will be diluted prior to running. Concentrations of substrates 
(Table 1) in samples will be measured via Dionex HPLC with a CarboPac MA1 column, GP40 
gradient pump, and ED40 electrochemical detector using pulse amperimetric detection running 
a 480 mM sodium hydroxide eluent at 0.4 mL min-1 (Hanko & Rohrer 2013). 
 

9. Broader Impacts 
With the projected increases in temperature, atmospheric CO2 (and associated decrease in 
ocean pH), and nitrogen loading to coastal oceans and terrestrial ecosystems (Yang et al. 2009, 
Gruber 2011), there is a growing need to understand how ecosystems that are largely governed 
by microbes will respond to these changes, which this proposal will address at a fundamental 
level.  This project will support one postdoctoral student, and we will mentor 2 to 5 
undergraduate students each year in independent research projects as part of MBL’s Semester 
in Environmental Science program, University of Chicago’s Metcalf program, and the Woods 
Hole Partnership Educational Program, where the latter specifically targets underrepresented 
groups in science. As described below, we will also mentor students from Cape Cod Community 
College each year.  

As part of our public outreach and broader impact goals, we will specifically promote science, 
technology, engineering and math literacy among undergraduate students, especially 
community college students. While these students are often exposed to microbiology and 
chemistry in different forums, e.g., the classroom, they are rarely afforded the opportunity to 
study the relationship(s) among living organisms and their geochemical environment. Here we 
propose to use the results of this research as the basis for research projects led by community 
college students working in the Vallino and Huber labs. The goal is to increase the numbers of 
underrepresented students in sciences by encouraging students to enter college and/or transfer 
to a four-year university, obtain a degree in a STEM subject, and continue on in a STEM field. It 
is clear that there is a unique niche that can be filled for community college students by linking 
researchers with Cape Cod Community College, an education-focused community college, via 
these research experiences. Such experiences enhance the educational opportunities for 
community college undergraduates and broaden the impact of this research beyond traditional 
audiences. Further, the emphasis on research-teacher partnership in a community college 
setting will provide a model for other, similar partnerships, such as new REU programs focused 
on community college students. 
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At the MBL and in coordination with the NSF Science and Technology Center for Dark Energy 
Biosphere Investigations (C-DEBI), we will host 4 community college students from Cape Cod 
Community College (CCCC) each summer. Funds for this program are supported through C-
DEBI. As noted, the goal of this effort is to expand our reach in the scientific community and 
beyond by engaging an often untapped resource, the community college student. Huber is 
currently partnering with CCCC to increase the number of underrepresented minority students 
and students from marginalized groups interested in STEM subjects, particularly disciplines 
related to microbiology, environmental sciences, geochemistry, genomics, ecology, evolution, 
and engineering. She has hosted 6 students from CCCC over the last 2 years, and supported 4 
students from a community college from Florida with support from a previous NSF grant. For 
this particular grant, students from CCCC will participate in an eight-week, paid, non-residential, 
summer internship program to gain firsthand exposure to the scientific process by working in the 
Huber and Vallino research labs. Students will work 40 hours a week collecting and analyzing 
data in the lab. They will be introduced to thermodynamic concepts regarding how mass and 
energy flow through ecosystems using our microbial systems as an example. Ecosystem theory, 
such as biodiversity versus function, will be discussed that will be related to their laboratory 
work with microorganisms. The concept of using numerical models to test ideas will be 
demonstrated with hands on teaching using the programing language R.  We have found 
Soetaert and Herman’s (2008) textbook particularly useful for this. In addition to the research 
component of the program, students will participate in mentoring sessions ranging from how to 
transition from a two-year college to a university to how to choose a career path. In coordination 
with the Cape Cod Community College STEM Network, we will actively promote our program 
via a public lecture and with faculty in science courses to recruit applicants to the program. 
Applications will be submitted on line and top candidates interviewed at the MBL with both PIs. 
Students are evaluated and tracked with C-DEBI’s external evaluator to ensure long-term 
success of the program.  
 

10. Results of Prior Research 
Theory: Biological systems organize to maximize entropy production subject to information and 
biophysicochemical constraints. EF-0928742, 9/2009-8/2013: $750,000. PIs: Vallino and 
Huber. Intellectual Merit: This project examined the hypothesis that biological systems evolve 
and organize in a manner that results in MEP. One of the project's main hypotheses is that 
living systems differ from abiotic systems, such as fire, by integrating entropy production over 
time using information stored in the organismal metagenome. A MEP-based model developed 
during the project has been able to simulate observations using only two adjustable parameters. 
Model results indicate the communities are inherently well adapted to handling cyclic energy 
inputs up to periods of at least 20 days. Broader Impacts: Experimental and modeling results to 
date have been presented at 8 international conferences and numerous departmental seminars, 
six papers have been published (Vallino 2010, Vallino 2011, Algar & Vallino 2014, Vallino et al. 
2014, Chapman et al. 2016, Vallino & Algar 2016) and one is in revision (Fernandez-Gonzalez 
et al. 2016).  The project has supported 9 undergraduate research projects and one postdoc. 
Data and model code are available on the project website 
(http://dryas.mbl.edu/MEP/DataModels/) as well as links to quality-filtered sequences publicly 
available through the VAMPS database (https://vamps.mbl.edu) under the project 
JAH_ENT_Bv6v4. Raw reads for V6 are available in the NCBI Short Read Archive under 
Accession Number PRJNA322031. 
  

http://dryas.mbl.edu/MEP/DataModels/
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