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Governing Equations 
Updated 25 Aug 2016 to add O2 constraint on reaction 𝑟𝑃𝐺  

Advection-Dispersion-Reaction Transport Model 
The maximum entropy production problem for Siders Pond is constrained by the following vertical 1D 

advection-dispersion-reaction equation, 
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(1) 

with the following Neumann and Robin boundary conditions, 

 

 
At pond surface:  

𝜕𝐜(𝑡, 𝑥)

𝜕𝑥
|
𝑥=0

= 0 

 

(2) 

 At pond bottom:  (−𝐷(𝑥)𝐴(𝑥)
𝜕𝐜(𝑡, 𝑥)

𝜕𝑥
+ 𝑞(𝑥)𝐜(𝑡, 𝑥))

𝑥=𝑑

= 𝑞(𝑑)𝐜𝐵 (3) 

 

where 𝐜(𝑡, 𝑥) is a state vector of concentration variables (mmol m
-3

) at time 𝑡 and depth 𝑥, and includes 

phototrophic catalyst, S𝐴 (see below), and 𝐫(𝑡, 𝑥, 𝛆) is a vector of reaction rates (mmol m
3
 d

-1
) in the 

given metabolic network whose values are determined by maximizing entropy production via adjustment 

of control variable vector, 𝛆.  Siders Pond cross-sectional area (m
2
) as a function of depth, 𝐴(𝑥), was 

determined from bathymetry plots, and the vertical volumetric flow rate (m
3
 d

-1
), 𝑞(𝑥), as well as lateral 

inputs (m
2
 d

-1
), 𝑞𝐿(𝑥), were determined from previous studies that quantified saltwater intrusion and 

freshwater entrainment that drives the vertical salinity gradient (Caraco 1986). It was assumed that the 

lateral inputs flow at an exponentially increasing rate towards the pond surface. The vertical dispersion 

coefficient (m
2
 d

-1
), 𝐷(𝑥), was numerically determined by fitting model output to observed salinity profile 

obtained from our 24 hr field sampling (see Fig GE-1 below).  Numerical results support the previous 

conclusion that the meromictic nature of Siders Pond is a dynamic balance between fresh and saltwater 

inputs. The characteristic timescale for transport in Siders Pond is approximately 1 yr, as evident by the 

transient salinity dynamics simulated over 1000 days starting at a uniform salinity of 18 PSU (Fig GE-2). 

Numerical solution of the above partial differential equations (PDEs) was obtained using an adaptive 

collocation package based on B-splines (Pew et al. 2016). 

Maximum Entropy Production (MEP) Model 
Reaction rates in Eq. (1) over 𝑡 and 𝑥 are determined by maximizing entropy production over an interval 

of time (see Vallino et al. 2014) and either locally (at 𝑥) or globally over the domain [0, 𝑑] (Vallino 

2011).  Since we have previously develop MEP network models for chemolithoautotrophs, 

chemolithoheterotrophs and chemoorganoheterotrophs (Vallino 2010, Algar & Vallino 2014), we have 

focused our initial efforts on phototrophs, as they are critical in Siders Ponds (and elsewhere of course), 

and phototrophy had not been explored within the MEP context.  

 

To develop and test the MEP phototroph model, we consider a PO4
3-

 limited system (as is Siders Pond) 

consisting of only phototrophs. Phototrophs are represented by two metabolic reactions. The first reaction, 
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𝑟𝑃𝑃, is the fixation rate of dissolved inorganic 

carbon (H2CO3) into simple sugar (CH2O) driven by the dissipation of photosynthetic active radiation, 

ℎ𝜈, as given by,  

 

 𝑟𝑃𝑃:  𝜀𝑃𝑃H2CO3 + 𝑛𝛾ℎ𝜈
S𝑃
→ 𝜀𝑃𝑃(𝐶𝑃 + O2), (4) 

 

where 𝜀𝑃𝑃 is the efficiency by which light is converted into chemical potential, 𝐶𝑃 is the intracellular 

carbon reserve stored as CH2O by algae, S𝑃, but 𝐶𝑃 does not contribute to catalytic activity, and  𝑛𝛾 is 

the mmol of photons captured per mmol of reaction extent, which is set to 

 

 𝑛𝛾 = −
∆𝑟𝐺𝐶𝐻2𝑂

∆𝑟𝐺𝛾
. (5) 

  

The free energy of reaction for CH2O synthesis, ∆𝑟𝐺𝐶𝐻2𝑂  (𝐽 𝑚𝑚𝑜𝑙
−1), and photon energy transfer, ∆𝑟𝐺𝛾, 

are, 

 ∆𝑟𝐺𝐶𝐻2𝑂 = ∆𝑟𝐺𝐶𝐻2𝑂
° + 𝑅𝑇𝑙𝑛 (

[𝐶𝑃][𝑂2]

[DIC]
)  (6) 

 ∆𝑟𝐺𝛾 = −𝜂𝐼ℎ𝜈𝑁𝐴, (7) 

 

where 𝜂𝐼 is the thermodynamic efficiency for the conversion of radiation to work, given by (Candau 

2003), 

 

 𝜂𝐼 = 1 −
4

3

𝑇𝑒𝑛𝑣
𝑇𝑠𝑢𝑛

+
1

3
(
𝑇𝑒𝑛𝑣
𝑇𝑠𝑢𝑛

)
4

, where 𝑇𝑠𝑢𝑛 = 5800 𝐾, 𝑇𝑒𝑛𝑣 = 298 𝐾, so 𝜂𝐼 ≅ 0.93, (8) 

 

ℎ𝜈 is Plank’s constant times the frequency of light (we used just green light for simplicity), and 𝑁𝐴 is 

Avogadro’s number in mmol. 
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Fig. GE-2. Transient simulation of salinity starting with 
uniform salinity of 18 PSU. 

Fig. GE-1. Fit of modeled salinity (red line) to observed 
salinity (black circles connected by lines). 
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Consequently, 𝑛𝛾 is defined in Eq. (5) so that as the efficiency of solar energy capture, 𝜀𝑃𝑃, approaches 1, 

Δ𝑟𝐺𝑃𝑃 for reaction 𝑟𝑃𝑃 approaches 0, as given by, 

 

 Δ𝑟𝐺𝑃𝑃 = 𝜀𝑃𝑃∆𝑟𝐺𝐶𝐻2𝑂 + 𝑛𝛾∆𝑟𝐺𝛾 = −(1 − 𝜀𝑃𝑃)∆𝑟𝐺𝐶𝐻2𝑂 . (9) 

 

And as 𝜀𝑃𝑃 approaches 0, all light energy is just dissipated as heat producing entropy at the rate 

−𝑟𝑃𝑃(𝑡, 𝑥)Δ𝑟𝐺𝑃𝑃/𝑇.  

 

The reaction rate of carbon fixation, 𝑟𝑃𝑃, is given by the following generalized kinetic model we have 

used in previous work (Vallino 2011, Algar & Vallino 2014) that consists of three terms, a maximum 

rate, a kinetic driver and a thermodynamic driver, as given by 

 

 𝑟𝑃𝑃 =
∆𝐼𝑃
𝑛𝛾
(

𝑐𝐶𝑂2
𝑐𝐶𝑂2 + 𝜅

∗𝜀𝑃𝑃
2 ) (1 − 𝑒

Δ𝑟𝐺𝑃𝑃
𝑅𝑇𝜒𝑃𝑃
⁄

). (10) 

 

Here, the maximum rate, 
∆𝐼𝑃

𝑛𝛾
, is dictated by the rate of light interception by the catalytic fraction of the 

phototroph, S𝑃.  The differential equation over depth for light absorption is given by, 

 

 
𝑑𝐼(𝑡, 𝑥)

𝑑𝑥
= −(𝑘𝑊 + 𝑘𝑃 (𝑐𝐶𝑃(𝑡, 𝑥) + 𝑐S𝑃(𝑡, 𝑥))) 𝐼(𝑡, 𝑥) = −∆𝐼𝑇 , (11) 

 

which is solved for 𝐼(𝑡, 𝑥) as part of the PDEs (1-3) above.  The light absorbed by only the catalytic 

portion of the phototroph is, 

 

 ∆𝐼𝑃 = 𝑘𝑃𝑐S𝑃(𝑡, 𝑥)𝐼(𝑡, 𝑥). (12) 

 

The light absorbed by phototrophs including that intercepted by carbon storage is then, 

 

 ∆𝐼𝑃𝐶 = 𝑘𝑃 (𝑐𝐶𝑃(𝑡, 𝑥) + 𝑐S𝑃(𝑡, 𝑥)) 𝐼(𝑡, 𝑥) (13) 

 

The second metabolic reaction captures the synthesis of phototrophs, with elemental composition 

CH𝛼𝑃O𝛽𝑃N𝛾𝑃P𝛿𝑃Si𝜁𝑃Fe𝜉𝑃, from stored carbon reserves and nutrients in the environment, as given, 

 

 𝑟𝑃𝐺: 𝐶𝑃 + 𝜀𝑃𝐺𝛾𝑃NH3 + 𝜀𝑃𝐺𝛿𝑃𝐻3𝑃𝑂4 + (1 − 𝜀𝑃𝐺)O2
S𝑃
→ 𝜀𝑃𝐺𝑥𝑃𝐺S𝑃 + (1 − 𝜀𝑃𝐺𝑥𝑃𝐺)H2CO3

+ 𝜀𝑃𝐺𝑦𝑃𝐺H2O 
(14) 

 

where the control variable, 𝜀𝑃𝐺 , is the efficiency of converting store carbon to phototroph biomass versus 

its oxidation to CO2 and water, and 𝑥𝑃𝐺 and 𝑦𝑃𝐺  are stoichiometric coefficients determined from 

conservation of H and O.  The kinetics of this reaction is given by, 

 

 𝑟𝑃𝐺 = 𝜈
∗𝜀𝑃𝐺
2 𝑐S𝑃 (

𝑐𝐶𝑃
𝑐𝐶𝑃 + 𝜅

∗𝜀𝑃𝐺
4 )(

𝑐𝑃𝑂4
𝛿𝑃

𝑐𝑃𝑂4
𝛿𝑃

+ 𝜅∗𝜀𝑃𝐺
4
)(

𝑐𝑂2
𝑐𝑂2 + 𝜅

∗𝜀𝑃𝐺
4 )(1 − 𝑒

Δ𝑟𝐺𝑃𝐺
𝑅𝑇𝜒𝑃𝐺
⁄

), (15) 

 

that is also based on kinetics previously developed. The standard reaction free energy, Δ𝑟𝐺𝑃𝐺
° , is given by 
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 Δ𝑟𝐺𝑃𝐺
° = 𝜀𝑃𝐺Δ𝑟𝐺S 𝑏𝑖𝑜𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠

° − (1 − 𝜀𝑃𝐺)∆𝑟𝐺𝐶𝐻2𝑂
°  (16) 

 

where 𝐺S 𝑏𝑖𝑜𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠
°  is the standard reaction free energy for biomass synthesis that we have previously 

calculated (Vallino 2010), and Δ𝑟𝐺𝑃𝐺 is readily calculated based on activity coefficients with the 

appropriate exponents as dictated by Eq. (14).  

 

For testing the above model formulation, we included as state variables salinity, dissolved oxygen, DIC, 

PO4
3-

, 𝐶𝑃 and S𝑃, so that the state vector of concentrations in Eq. (1) is, 

  

 𝐜𝑇(𝑡, 𝑥) = [𝑐𝑆𝑎𝑙, 𝑐𝐷𝑂, 𝑐𝐷𝐼𝐶, 𝑐𝑃𝑂4, 𝑐𝐶𝑃 , 𝑐S𝑃]
𝑇
. (17) 

 

The reaction rate vector in Eq. (1) is given by, 

 

 𝐫(𝑡, 𝑥) =

[
 
 
 
 
 
𝑟𝑆𝑎𝑙
𝑟𝐷𝑂
𝑟𝐷𝐼𝐶
𝑟𝑃𝑂4
𝑟𝐶𝑃
𝑟S𝑃 ]

 
 
 
 
 

=

[
 
 
 
 
 

0
𝜀𝑃𝑃𝑟𝑃𝑃(𝑡, 𝑥) − (1 − 𝜀𝑃𝐺)𝑟𝑃𝐺(𝑡, 𝑥)

−𝜀𝑃𝑃𝑟𝑃𝑃(𝑡, 𝑥) + (1 − 𝜀𝑃𝐺𝑥𝑃𝐺)𝑟𝑃𝐺(𝑡, 𝑥)

−𝜀𝑃𝑃𝛿𝑃𝑟𝑃𝐺(𝑡, 𝑥)

𝜀𝑃𝑃𝑟𝑃𝑃(𝑡, 𝑥) − 𝑟𝑃𝐺(𝑡, 𝑥)
𝜀𝑃𝐺𝑥𝑃𝐺𝑟𝑃𝐺(𝑡, 𝑥) ]

 
 
 
 
 

 (18) 

 

Entropy Production Terms 
Entropy production as a function of depth, 𝜎̇(𝑡, 𝑥) (J m

-1
 K

-1
 d

-1
), associated with both reactions, but NOT 

including light dissipated by abiotic particles, is given by, 

 

 𝜎̇𝑃𝑃(𝑡, 𝑥) =
𝐴(𝑥)

𝑇
∆𝑟𝐺𝐶𝐻2𝑂 (

∆𝐼𝑃𝐶(𝑡, 𝑥)

𝑛𝛾
− 𝜀𝑃𝑃(𝑡, 𝑥)𝑟𝑃𝑃(𝑡, 𝑥)) (19) 

 

 𝜎̇𝑃𝐺(𝑡, 𝑥) = −
𝐴(𝑥)

𝑇
𝑟𝑃𝐺(𝑡, 𝑥)Δ𝑟𝐺𝑃𝐺 (20) 

 

 

Total entropy production per unit depth, 𝜎̇𝑇(𝑡, 𝑥) (J m
-1

 K
-1

 d
-1

), which is the quantity to be maximized, 

includes light dissipation by abiotic particles, is given by, 

 

 

 𝜎̇𝑇(𝑡, 𝑥) =
𝐴(𝑥)

𝑇
(∆𝑟𝐺𝐶𝐻2𝑂 (

∆𝐼𝑇(𝑡, 𝑥)

𝑛𝛾
− 𝜀𝑃𝑃(𝑡, 𝑥)𝑟𝑃𝑃(𝑡, 𝑥)) − 𝑟𝑃𝐺(𝑡, 𝑥)Δ𝑟𝐺𝑃𝐺) (21) 

 

Optimization Problem 
To determine how the control variables 𝜀𝑃𝑃(𝑡, 𝑥) and 𝜀𝑃𝐺(𝑡, 𝑥) vary over time and space, we setup a 

receding horizon optimal control problem (Vallino et al. 2014) in which 𝜎̇𝑇(𝑡, 𝑥) is maximized over 

successive intervals of time, ∆𝑡, and is either maximized locally, as 

 

 max
 𝜀𝑃𝑃,𝜀𝑃𝐺

∫ 𝜎̇𝑇(𝜏, 𝑥𝑗)𝑑𝜏

𝑡𝑖+∆𝑡

𝑡𝑖

 ∀𝑗 in the control grid [𝑥1, 𝑥2, … , 𝑥𝑛], (22) 
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or globally over the depth of the water column, 𝑑, as, 

 

 max
 𝜀𝑃𝑃,𝜀𝑃𝐺

∫    ∫ 𝜎̇𝑇(𝜏, 𝜒)𝑑𝜏

𝑡𝑖+∆𝑡

𝑡𝑖

𝑑𝜒

𝜒=𝑑

𝜒=0

  (23) 

 

where either optimization is subject to the constraints imposed by Eqs. (1-3) and Eq. (18).  However, 

when we constructed the global optimization problem as given by Eq. (23), an obvious problem arose. In 

this phototroph only problem, entropy production cannot exceed the rate at which light is being dissipated 

in the water column as given by Eqs. (11) and (21).  If the water column is sufficiently deep for a given 

level of turbidity given by 𝑘𝑊, then all the light will be dissipated before it reaches the bottom of the 

pond, as is the case for Siders Pond.  Consequently, the addition of phytoplankton to the system cannot 

increase the global entropy production, because it is already maximized by light absorption by water.  

However, if entropy production is maximized locally as in Eq. (22), then increased phototroph 

concentrations in the surface layers will increase local entropy production. This leads us to the 

conclusion that for at least simple phototrophic systems, entropy production must be maximized locally, 

which is not the case for chemically based systems as discussed in previous work (Vallino 2011).   

 

Model Simulations 
Here we present results for the simple phototroph model described above.  As mentioned above, entropy 

is maximized locally as given by Eq. (22).  For the numerical solution, two computational grids are used, 

one for solution of the PDEs given by Eqs. (1-3) and (18), and another, lower density, grid, 𝑔𝑂𝐶(𝑡𝑖, 𝑥𝑗) 

where values of  𝜀𝑃𝑃(𝑡, 𝑥) and 𝜀𝑃𝐺(𝑡, 𝑥) are set by the optimization use to solve Eq. (22).  For local 

optimization, entropy is maximized as a given depth, 𝑥𝑗, that corresponds to the spatial grid points in 

𝑔𝑂𝐶(𝑡𝑖, 𝑥𝑗). Once a solution is found for a particular depth, the next depth in 𝑔𝑂𝐶(𝑡𝑖, 𝑥𝑗) is then optimized.  

Once all levels have been optimized, the procedure repeats until either all levels no longer change to a 

specified precision, or a maximum number of iterations is reached. The receding horizon optimal control 

uses two time intervals, one that corresponds to an “infinite”, or long, time scale, ∆𝑡∞, and a shorter 

“finite” update interval, ∆𝑡𝐹.  While the spacial grid points in 𝑔𝑂𝐶(𝑡𝑖, 𝑥𝑗) are set at fixed values, the time 

grid points span the current infinite interval.  Once a solution to the infinite interval is obtained, the 

solution is only propagated over the shorter finite interval, ∆𝑡𝐹.  Once the first interval is completed, the 

next interval is begun, and the solution marches forward a sufficient number of finite intervals until the 

desired simulation time is reached.  See Vallino et. al (2014) for more details.  For the optimization of Eq. 

(22), we used L-BFGS-B, which was developed to solve large-scale bound constrained optimization 

problems (Morales & Nocedal 2011).  We used finite differences to construct the gradient needed by L-

BFGS-B, but we parallelized the code to take advantage of multi CPU architectures using OpenMP, but 

we well be moving to MPI to take advantage of massively parallel architectures. 

 

For the simulation results presented below, a finite interval of 2 days and an infinite interval of 4 days was 

used, where the optimal control grid, 𝑔𝑂𝐶(𝑡𝑖, 𝑥𝑗), consisted of 16 time points spaced exponentially over 

the infinite interval and 10 depth points at 0, 1, 2, 3, 4, 6, 8, 10, 12, and 15 m. The simulations were run 

over three finite intervals, or 6 days corresponding to June 25 to July 1.  The simulations were started 

from uniform initial conditions over depth, so these results are only being used for testing and 

demonstration.  We note that all of the simulated outputs below result purely from the maximization of 

local entropy production under the imposed constraints. There are few adjustable parameters in this 

model. 
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Fig. GE-3. Intensity of photosynthetic active radiation 
over time and depth.  As phototroph population 
increases, more light is intercepted and dissipated as 
entropy in the surface layers of the pond. 
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Fig. GE-4. Simulated phosphate concentration over 
time and depth.  Phosphate becomes limiting in the 
surface layers as phototroph population increases. 
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Fig. GE-5. Dissolved oxygen concentrations over time 
and depth.  As expected, the surface layers become 
super saturated in O2 as phototrophs grow.  However, 
air-water gas exchange is currently not implemented 
in the model.  Also included in this simulation are the 
grid points (black dots) used in the PDE solution grid 
that change both in location and in number as steep 
gradients develop in space.  Time stepping by 
BACOLI95 is also dynamic, but not shown here. 
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Fig. GE-6. Dissolved inorganic carbon over time and 
depth.  Because of CO2 fixation by phototrophs, 
decreases in DIC correspond to where and when 
phototrophs are growing.  Note, the current version of 
the model does not model carbonate chemistry, which 
will be added to later versions of the model. 
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Fig. GE-7. Concentration of phototroph catalytic 
biomass, S𝑷, over time and depth.  It take a few days 
before biomass accumulates to significant levels from 

the initial conditions of 0.1 M on 25 Jun. 
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Fig. GE-8. Concentration of stored carbon reserves by 
phototrophs produced by reaction 𝒓𝑷𝑷.  This carbon is 
used for synthesis of phototroph catalytic biomass by 
reaction 𝒓𝑷𝑮.  Note, some diel oscillations in 
concentration are evident, and peak concentrations 
appear to occur after peak solar radiation at noon. 
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Fig. GE-9. Entropy production rate that resulted from 
local optimization. As biomass accumulates at the 
surface, more light is locally absorbed and dissipated 
as heat.  Compare to PAR intensity shown in Fig. GE-3. 
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Fig. GE-10. Entropy produced over each finite interval. 
At the start of each interval total entropy produced is 
reset to zero, and the integrated value at the end of 
the interval is what is maximized at a given depth in 
Eq. (22). 
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Fig. GE-11.  Rate of CO2 fixation by reaction 𝒓𝑷𝑷.  Since 
this reaction can only occur when light is present, at 
night or in the shade the rates go to zero. It is not clear 
at this time why a bimodal distribution over depth 
occurs in the simulation. 

Time (d)

d
e

p
th

(m
)

25-Jun 26-Jun 27-Jun 28-Jun 29-Jun 30-Jun 01-Jul

0

5

10

15

400

371

343

314

286

257

229

200

171

143

114

86

57

29

0

r
PG

(M d
-1
)

Fig. GE-12. Rate of phototroph catalytic biomass 
synthesis from internal C storage as given by reaction 
𝒓𝑷𝑮.  As PO4

3-
 becomes limiting in the surface water, 

the rate of reaction is reduced, but can occur at 
deeper locations in the water column where P and 𝑪𝑷 
are still available. 
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Fig. GE-13. Control variable 𝜺𝑷𝑷 that determines how  
much of the intercepted light is used to fix CO2 versus 
being dissipated as heat.  This figure also shows the 
grid used by the optimal control problem (black dots). 
Only the control variables are changed by the optimal 
control solution in order to maximize entropy 
production.  All other variables result from adjusting 
𝜺𝑷𝑷 and 𝜺𝑷𝑮 

Time (d)

d
e

p
th

(m
)

25-Jun 26-Jun 27-Jun 28-Jun 29-Jun 30-Jun 01-Jul

0

5

10

15

0.884

0.828

0.772

0.715

0.659

0.603

0.546

0.490

0.434

0.377

0.321

0.265

0.208

0.152

0.096


PG

Fig. GE-14. Control variable 𝜺𝑷𝑮 that determines how 
much of the fixed carbon is converted to phototroph 
biomass versus being oxidized into CO2 and water. The 
four graphs on this page (Figs. GE-11-14) are the 
variables that best map to our metagenomics and 
metatranscriptomics data that have been collected 
over similar spatial and temporal scales in Siders Pond.  
The switching shown in these figures should 
correspond to changes in gene abundance and 
messenger levels if the model is accurately capturing 
the phototrophic community.  However, these are just 
example simulations at this point. 
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