
1 

 

1. Introduction 
Earth’s biogeochemical cycles that dictate mass and energy flow on a planetary scale result from a 

complex interaction of individual microscopic organisms through growth, competition and cooperation. 

Because biogeochemistry is ultimately driven by organisms, it is natural and customary to simulate these 

processes by modeling the growth of individual guilds and examining the biogeochemistry that results 

(e.g., Le Quere et al. 2005).  However, modeling individuals to understand and predict biogeochemistry 

introduces many challenges due to the extensive amount of information that is necessary to parameterize 

and constrain such models, such as organism maximum specific growth rates, substrate and prey 

affinities, growth efficiencies, etc. (Vallino 2000, Ward et al. 2010).  For systems that can be sufficiently 

sampled over time and space, organism-based models perform respectably, provided model forecasts do 

not extrapolate beyond the data envelope used for model calibration.  The reason organism-based models 

extrapolate poorly is that they are not based on any governing principles, except conservation of mass and 

sometimes energy, which are insufficient constraints for describing how living systems function. How can 

we understand development of biogeochemical cycles and how they operated in the distant past, or how 

they may change in the future, if little or no information is available on the individuals that give rise to 

such cycles? 

Current biogeochemical cycles are influenced not only by bacteria, archaea, viruses and fungi, but also by 

macroscopic multicellular organisms; however, the majority of biogeochemical reactions are only 

catalyzed by bacteria and archaea (Falkowski et al. 2008), and microbes were the only organisms present 

for the first ~2.5 Gyr of  Earth’s 3.8 Gyr fossil record (McKeegan et al. 2007). Consequently, in this 

proposal we will only focus on bacteria and archaea, and we will view them as simple molecular 

machines (Falkowski et al. 2008), or more appropriately, as biogeochemical catalysts. (Macroscopic 

organisms can be readily included in our framework by accounting for their enhancement of mass 

transport processes, such as via mastication, lungs, burrowing, sediment trapping, etc, but this lies outside 

the scope of the current proposal.) Our objective is to understand and predict the allocation of biological 

machinery to biogeochemical reactions and the associated catalytic enhancement of reaction rates.  

In order to understand and predict how microbial communities give rise to biogeochemical cycles, it is 

necessary to take a different perspective that focuses directly on the flow of energy and mass through 

biochemical reactions at the expense of understanding finer scale dynamics, such as the contribution of 

individual species. This approach is analogous to modeling climate instead of weather. Thermodynamics 

is a particularly appropriate framework for this due to its ability to predict relationships between 

macroscopic state properties, such as pressure, temperature and volume as related by the ideal gas law, 

without requiring information on the microscopic states, such as molecular position and momentum, that 

ultimately give rise to the macroscopic properties (Kondepudi and Prigogine 1998). Even though a small 

volume of matter is composed of a large number of atoms (a liter of water contains 10
25

 molecules) that 

can give rise to an astounding number of degrees of freedom, the success of thermodynamics tells us that 

most of these degrees of freedom are unimportant for describing the macroscopic properties and the 

relationships between matter and energy, at least for systems at equilibrium. Furthermore, the energy 

released by a chemical reaction is independent of the nature of the living or abiotic system that catalyzes 

it. As a result of these advantages, there have been numerous research avenues devoted to thermodynamic 

or thermodynamic-like approaches for understand ecosystem processes, since ecosystems exhibit 

biogeochemical reproducibility but are composed of many interacting organisms (e.g., Lotka 1922, Odum 

and Pinkerton 1955). However, living systems are not at equilibrium (Schrödinger 1944, Morowitz 1968), 

meaning nonequilibrium thermodynamics must be invoked. This proposal will further develop the 

concepts of nonequilibrium thermodynamics for understanding biogeochemical processes. 

 
2. Objectives 
In this proposal, we will build on our previous research for modeling microbial biogeochemistry using the 

principle of maximum entropy production (MEP) that derives from nonequilibrium thermodynamics.  We 

will represent microbial communities as a distributed metabolic network where the synthesis and 
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allocation of molecular machinery to metabolic pathways is determined from a MEP-based optimization 

over successive intervals of time.  In particular, we propose to 1) extend the mathematical framework and 

numerical algorithms of the current MEP model so that predictions can be extended over space and 

directly compared to observations collected from Siders Pond, a meromictic pond located on Cape Cod, 

MA; 2) extend the metabolic network to incorporate phototrophic reactions; 3) assay biogeochemical 

constituents over depth in Siders Pond and determine allocation of molecular machinery to primary 

metabolic pathways using metagenomics and metatranscriptomics; 4) assess the utility of the MEP 

hypothesis by comparing MEP-based model predictions to biogeochemical and genomic observations 

over time and space in Siders Pond. 

 

3. Theoretical Background and Results to Date 

3.1 Maximum Entropy Production (MEP) 
Numerous theories describing ecosystem organization and function have been proposed in theoretical 

ecology dating back to at least Lotka (1922), who proposed ecosystems organize to maximize power. 

However, in this proposal we are particularly interested in the maximum entropy production (MEP) 

conjecture (Paltridge 1975, Dewar 2003, Dewar 2005, Martyushev and Seleznev 2006, Niven 2009), 

which states that steady state, nonequilibrium systems with many degrees of freedom will likely be found 

in a macrostate that maximizes internal entropy production. If internal self-organization, such as vortices 

and macroscopic structures, facilitates internal entropy production, then those structures will likely 

develop (Lorenz 2003), but the theory makes no distinction between biotic or abiotic systems. Entropy 

here refers to the classic thermodynamic definition of Gibbs and Boltzmann. Similar to equilibrium 

thermodynamics that require systems to be found in a state of maximum entropy, MEP indicates that 

nonequilibrium systems will head towards equilibrium along the fastest possible pathway.  That is, they 

will dissipate free energy as fast as possible within the constraints imposed on the system (Makela and 

Annila 2010, Vallino 2010).  Several phenomena appear consistent with MEP, including planetary-scale 

heat transport (Lorenz et al. 2001, Kleidon et al. 2003), laminar to turbulent flow transition (Martyushev 

2007), plant evapotranspiration (Wang and Bras 2011), atmospheric and ocean circulation (Kleidon et al. 

2003, Shimokawa and Ozawa 2007) and many others (see Dewar et al. 2014). When applied to biological 

systems, the MEP conjecture leads to a new paradigm from ‘… “we eat food”  to “food has produced us 

to eat it”’ (Lineweaver and Egan 2008). MEP provides directionality to evolution of the biosphere, in that 

it should progress towards states of higher entropy production. The global succession of anoxygenic 

phototrophs to oxygenic phototrophs is one example of this progression.  

We have developed an initial theoretical framework for describing microbial biogeochemistry as a type of 

dissipative system governed by maximum entropy production (Vallino 2010, Vallino 2011, Algar and 

Vallino 2014, Vallino et al. 2014) that forms the basis of this proposal.  Here we will briefly describe the 

theoretical foundation of the approach, its mathematical implementation and some results to date. New 

advancements we will pursue in this proposal are described in Section 5.  The model is founded on the 

hypothesis that microbial communities evolve, adapt and organize to extract as much free energy from the 

environment as available resources (N, P, S, etc.) and information allow.  Genomic information is critical, 

as it ultimately determines the set of molecular machines―catalysts in particular―and metabolic 

functions that can be constructed from the available environmental resources.  This information also 

includes designs for the molecular machines that turnover machinery, namely protists, predatory bacteria 

and viruses, which allow the system to be dynamic and adaptive to changes in environmental drivers.  

Under this context, food webs are hierarchical systems that effectively dissipate available free energy, or 

analogously, maximize the rate of entropy production. Our modeling approach determines the allocation 

of molecular machinery to metabolic function that is dynamically distributed across many phyla by 

maximizing entropy production.  

While actively discussed by the community, uncertainty remains regarding the spatial scale over which 

MEP applies (Lucia 2012).  Our preliminary work (discussed below) indicates that MEP applies at a 
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systems level as defined by the extent of matter and 

information connectivity (Vallino 2011).  Hence, a single 

bacterium does not maximize entropy production because it 

does not dissipate all chemical potential (some of the free 

energy in the food remains in the microbial biomass produced, 

so all chemical potential is not destroyed).  However, a 

microbial community does achieve a MEP state because the 

growth of each organism is more or less consumed by a 

predator, and the predator by its predator, and so on.  Total 

biomass of the community will increase until either all 

incoming energy is consumed (energy limited), or resources 

limit the amount of catalyst (biomass) that can be synthesized 

(resource limited).  For instance, the surface ocean is resource 

limited (typically by N, P or Fe), while the deep ocean is energy limited.  Regardless of the limitation, the 

ecosystem operates near a pseudo steady state where the assimilated free energy is simply dissipated by 

the spinning of the ecosystem network, since chemical potential (biomass) does not accumulate (Fig. 1).  

Microbes and microbial consortium so effectively organize that nearly all chemical potentials found in the 

environment are readily accessed and dissipated.  Hoehler (2004) estimated that reaction free energy 

potentials as low as 9 kJ mol
-1

 can be exploited by microbes.   

3.2 Distributed Metabolic Network Representation 
Being a thermodynamic theory, MEP does not describe the structure of 

a microbial community (for instance, bacteria can be grazed by protists 

or turned over by viruses). In fact, the MEP conjecture indicates that 

there should be many different community configurations that give rise 

to the same entropy production, and there is some experimental support 

for this idea (Fernandez et al. 1999, Wittebolle et al. 2008, Vallino et 

al. 2014). Because of this interchangeability, we do not attempt to 

model specific organisms, but rather only constrain the system by the 

metabolic functions it is capable of expressing. Consequently, the 

microbial community is represented as a distributed metabolic network 

(Vallino 2003), where each metabolic function is catalyzed by an 

associated biological structure, Si, that is intended to capture the 

general capabilities of the community for function i. Only recently 

have systems biology approaches been attempted for modeling distributed metabolic networks (Klitgord 

and Segre 2011, De Filippo et al. 2012, Zomorrodi et al. 2014), but we developed a more aggregated 

approach where only extracellular metabolites are included as network nodes, and functional pathways 

that may consist of 10s or 100s of enzymatic steps are represented by a single biological structure,    and 

reaction.  For example, we simulated a methanotrophic community with only 4 biological structures and 8 

extracellular metabolites (Fig. 2) (Vallino et al. 2014).  

The implementation of the reactions in a metabolic network is designed to place as many degrees of 

freedom as possible in optimal control variables that are determined by maximizing entropy production, 

while minimizing the number of adjustable parameters that often plague standard biogeochemical models 

(Ward et al. 2010).  The general approach is to use a growth efficiency term,   , as the control variable for 

each biological structure,   , that catalyzes a metabolic function, including those that serve to turn over 

catalyst (i.e., viruses or predators).  Consider the following two-reaction network for glucose oxidation:  

           (    )  
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For simplicity we have assumed    composition is given by     (   ) , and    represent feeding 

preference, if any, by   . This simple two-reaction network has several important features critical to 

implementing the MEP model.  1) Each reaction is catalyzed by its respective biological structure, Si, so 

reaction rates depend on the concentration of the biological structure,    
, but the reaction can also 

synthesize catalyst (i.e., they are autocatalytic reactions that can grow exponentially). 2) The coupled 

reactions can operate in a futile cycle perpetually turning over biological structure fueled by glucose 

oxidation (e.g., Fig. 1). 3) The growth efficiency parameter,   , selects the degree to which reduced 

organic carbon is either converted to more catalyst (pure anabolic reaction as     ) or oxidized to CO2 

and H2O (pure catabolic reaction as     ), where the latter reaction produces large amounts of entropy; 

however, catalyst must also be present for the reactions to proceed. Note, the free energy of reaction (1) 

remains negative (i.e., can occur spontaneously) even when     , because living organisms, contrary to 

popular believe, are not low entropy structures (Vallino 2010, Martyushev 2013).  

3.3 Reaction Kinetics 
To model the rates for reactions (1) and (2), we use the following novel expression,  

        
 (    

 )   
∏(

  

       
 )

 

  (3) 

that is similar to the classic multi-substrate Monod growth equation where    are substrate concentrations, 

(              
) or (   

    
), but the maximum specific growth rate (  ) is replace by     

 (  

  
 ) and the half saturation, or Monod, constant is given by     

 .  The fixed parameters    ( = 350 d
-1

) 

and    ( = 5000 mmol m
-3

) have been chosen such that Eq. (3) can simulate bacteria growing in 

oligotrophic conditions, such as the middle of ocean gyres (i.e.,         ), to bacteria such as E. coli 

growing in rich media under ideal conditions (i.e.,          )  by simply changing the value of the 

growth efficiency,   , between 0 and 1 (see Vallino 2011), but also see (Cajal-Medrano and Maske 1999). 

The kinetic equation (3) also accounts for the thermodynamic tradeoff between power and efficiency, 

because as    approaches 1, reaction rate is driven to 0 due to the loss of thermodynamic force (Jin and 

Bethke 2003). As anabolic-catabolic coupled reactions approach 100% energy transfer efficiency 

(         ), they proceed reversibly, so infinitely slowly.  

3.4 Internal Entropy Production 
Change in system entropy,   , is the sum of entropy exchange with the environment,    , and internal 

entropy production,    , due to irreversible processes:            (Prigogine et al. 1972).  While 

entropy exchange can be either positive or negative (it is defined by heat and mass exchange), the Second 

Law requires      . An entropy balance equation then takes the form, 

 
  

  
 ∑     ̅

 
 

 

 
  ̇   (4) 

where   is system entropy,    and   ̅ are molar flux and molar entropy of constituent   transported into 

the system, respectively, and   is heat flux into the system at temperature  .  Internal entropy production, 

 ̇ , is due to internal irreversible (dissipative) processes ( ̇   ) and it is the quantity that MEP 

considers; MEP does not pertain to system entropy,  , which can either increase or decrease. 

Internal entropy production rate associated with reactions,  ̇  (   
-   - ),  is readily calculated from the 

reaction rate,    (      -   - ), Gibbs free energy of reaction,      (      - ), system volume,   (  ), 

and temperature,   ( ) (Vallino 2010).  For the simple two reaction network given above, reaction 

entropy production is given by, 
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As evident in Eqs. (1-3), both reaction rates and associated Gibbs free energy of reaction depend on the 

growth efficiency control variables,   , and the concentrations of state variables,  . To calculate Gibbs 

free energies of reaction, we account for concentration of reactants and products as well as for activity 

coefficients (Alberty 2003). Also, as described by Alberty (2003), we explicitly account for proton 

dissociation equilibria between chemical species via pH, so “     ” and “   ” in the above reactions 

represent           
-
    

 -
 and    (  )     

 , respectively (all weak acids and bases are 

accounted for similarly). Not shown here, but we also calculate entropy production from mixing,  ̇ , but 

these terms are only a small fraction of the entropy of reaction,  ̇ , given by Eq. (5), so that total internal 

entropy production ( ̇   ̇   ̇ ) is well approximated with  ̇   ̇  (see Vallino 2011 for details).  In 

the two reaction network, maximizing the rate of glucose (    ) oxidation maximizes entropy 

production; chemical potential is simply converted to heat that is transported out of the system.  However, 

catalyst,   , must be synthesized to increase reaction rates, but excessive catalyst synthesis results in 

lower entropy production (chemical potential gets locked in   ).  The MEP conjecture argues that 

systems organize to locate this natural balance between catalyst synthesis and reduced-carbon 

oxidation to maximize internal entropy production.   

The above description for the simple two-reaction network can be readily extended to more complex 

networks (see below), as well as to numerous substrates and products; abiotic reactions are also easily 

incorporated, but their kinetic expressions are required.  Reaction rates,  , determined from maximizing 

entropy production are used in a standard state-space mass-balance model, as given by 

 
  ( )

  
  ( ( )   )    ( ( )  ( ))  (6) 

where  ( ) is a vector of extracellular metabolite (i.e.,     
,     , etc.) and biological structure (   

) 

concentrations,   is a reaction stoichiometric matrix based on the metabolic network and  ( ( )   ) 

accounts for transport of constituents across the system boundary that may depend on external 

concentrations,   .  Solution to Eq. (6) provides prediction on how metabolite concentrations vary over 

time as well as how allocation of biological structure to metabolic pathways changes over time. Reaction 

rates,  ( ), are also predicted as well as activity or expression of biological structure as given by  ( ). 

3.5 MEP Optimization: instantaneous versus average entropy production. 
The metabolic reaction rates,  ( ), are determined by maximizing internal entropy production rate by 

adjusting  ( ); however, if entropy production is maximized at each time point during solution of Eq. (6), 

we find the model behaves nothing like biology.  While chemical potential, such as        , is 

destroyed as expected, so is all biological structure.  It was quickly realized that this occurs because S is 

just reduced organic carbon and its oxidation produces entropy.  If entropy production is maximized 

instantaneously, then S is never produced, because this reduces instantaneous entropy production, and 

whatever S is present at the start of a simulation is oxidized.  To solve this problem, we maximize 

entropy production over an interval of time.  In this case, the model produces results comparable to 

observations (see below), because if more catalyst exists at the end of the interval then more chemical 

potential can be destroyed, so investment in S synthesis occurs until either resources (N, P, Fe, etc) limit 

S synthesis, or sufficient S exists to destroy all available free energy.   

The computational remedy to the MEP optimization problem introduced an intriguing hypothesis: a 

proposed distinction between biotic and abiotic systems.  Abiotic systems, such as fire or a rock rolling 

down a hill, maximize instantaneous entropy production  (e.g., they take a steepest descent pathway down 

a potential energy surface), while biotic systems use information stored in the metagenome to execute 
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temporal strategies acquired via evolution to maximize entropy production over a finite period of time 

(Vallino 2010).  A simple example is the storage of internal energy reserves (e.g., starches) to permit 

metabolic function to persist when external energy sources become temporarily unavailable, such as in 

animal hibernation and plant dormancy over winter. Circadian rhythm is another example that allows 

phototrophs to “predict” the sun will return and can orchestrate metabolic machinery appropriately before 

sunrise.  While temporal strategies are well known and appreciated in biology, it is surprising that no 

biogeochemical models we are aware of account for such anticipatory control.  

To maximize averaged entropy production over time, we use a receding horizon optimal control approach 

(Vallino et al. 2014) to find the reaction efficiency terms,   ( ), that maximize internal entropy 

production over a long time interval (   ) starting at the current time   , as follows, 

 

   
 

 

   
∫  ̇ ( ) 

   (    )  
      

  

                      

            
  ( )

  
  ( ( )   )    ( ( )  ( ))           

 (7) 

Because prediction uncertainty increases with time, the exponential term in Eq. (7),     (    ), discounts 

the contribution of entropy production to the solution the farther in time the integration proceeds based on 

the magnitude of   . The subject to constraints are derived from the mass balance model, Eq. (6), and box 

constraints on the control variables.  Once the solution is determined over the long     interval, a shorter 

time step,   , is actually taken, so the next optimization interval for Eq. (7) is started at      , and the 

realized average entropy production over the shorter    interval is calculated as, 

 〈 ̇ (    )〉  
 

  
∫  ̇ ( )  

     

  

 (8) 

A solution can be determined for any length of time by repetitively solving Eqs. (7) and (8) over a 

sufficient number of sequential intervals.  

4.5.1 Results from two MEP-based studies. To examine performance of our MEP approach, we modeled a 

laboratory methanotrophic-based microbial community subject to constant and periodic inputs of energy 

(Vallino 2010, Vallino et al. 2014).  The experiment (also see http://ecosystems.mbl.edu/MEP) consisted 

of four 18 L microcosms (MCs) operating in chemostat mode (0.1 d
-1

 dilution rate) that were inoculated 

with whole water collected from a cedar bog located on Cape Cod, MA.  Two MCs (MC 2 and 3) were 

continuously sparged with 4.9% methane in air, while two other MCs (MC 1 and 4) were periodically 

sparged for 10 d with 4.9% methane in air, then 10 d with just air (20 d period).  Samples were regularly 

removed for nutrient analyses, and microbial community composition was determined by sequencing the 

V4 and V6 hypervariable regions of the ribosomal 16S gene using 454 pyrosequencing (Huber et al. 

2007). Because we were able to include most of the model’s degrees of freedom in the MEP optimization, 

the model only requires two 

adjustable parameters.  Nevertheless, 

the MEP-based model was able to 

accurately simulate both the control 

and cycled MCs (Fig. 3) (Vallino et 

al. 2014).  An important finding was 

that the model was only able to 

capture the dynamics of the cycled 

MCs if the optimization interval,   , 

was on the order of the cycle period 

(20 d).  Furthermore, the MC’s 

exhibited relatively stable methane 
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Fig. 3. Modeled (green) and observed (black) methane concentrations 

exiting MCs for both the control (left) and cycled (right) treatments. 
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oxidation rate (Fig. 3) 

even though community 

composition varied 

dramatically over the 500 

d experiment (Fig. 4) (a 

property consistent with 

the MEP conjecture). 

Attempting to model such 

community dynamics 

would be very challenging 

using systems biology 

approaches (e.g., 

Zomorrodi et al. 2014), yet 

the MEP approach worked 

well at simulating mass 

and energy flow through 

the community using a 

relatively simple metabolic network (Fig. 2).    

We have also used the MEP model to examine metabolic switching 

between denitrification, dissimilatory nitrate reduction to 

ammonium (DNRA) and anammox that occurs during anaerobic 

nitrate reduction in sediments and in oceanic oxygen minimum 

zones (Algar and Vallino 2014). MEP model simulations (Fig. 5) 

show that the metabolic switching between the three pathways 

(Fig. 5,         , top) is driven by the relative concentration of 

labile organic carbon        to nitrate     
-
 .  When labile carbon is limited, the MEP model favors 

anammox, but as labile carbon becomes more available relative to nitrate, metabolism shifts toward 

denitrification (Fig. 5, bottom).  At high levels of carbon input relative to nitrate, DNRA becomes the 

dominate pathway.  Even though no parameter values were adjusted, the MEP model is consistent with 

general observations on anaerobic nitrate utilization (Burgin and Hamilton 2007), including a recent study 

showing the importance of C and N stoichiometry (Babbin et al. 2014).   

Our results from these two studies support the conjecture that MEP can be used to predict microbial 

biogeochemistry, but they were 0D models that did not involve a spatial dimension. Introducing spatial 

dimensions introduces another interesting question.    

3.6 MEP Optimization: local versus global  
Similar to the instantaneous versus average entropy production question above, when one or more spatial 

dimension is added to a MEP model, the question arises if entropy 

production should be maximized at each grid point independently (i.e., 

locally: ∑     ̇(     )     ) or over the entire model domain (i.e., 

globally:    ∑  ̇(     )     ), and does it matter which approach is use 

(Fig. 6)?  To investigate this question we developed a simple two box 

model crudely representing the surface and deep ocean (Vallino 2011).  

Our results show that maximizing entropy production globally can result in 

greater entropy production than maximizing local entropy production; 

however, global optimization requires that the system must coordinate 

function over space.  While it is well known that spatial coordination via 

quorum sensing compounds occurs in microbial communities that are in 

close physical contact such as in biofilms (Decho et al. 2010, Goo et al. 

Fig. 6. Maximize 𝝈̇ at each grid 

point (local) or over the sum of 
all grid points (global)? 

Fig. 4. Bacterial and archaeal species 

abundance (%), as operational 
taxonomic units (OTU) from 454 tag 
pyrosequencing for MC 3 (control).   
Only OTUs with at least 4% abundance 
are shown, but 18,610 taxa were 
detected across all four MCs (at 97% 
similarity). 
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2012, Mitri and Foster 2013), it is not clear if coordination occurs over larger spatial scales.  While our 

MEP model can be based on maximizing entropy production either locally or globally, it is unknown 

which approach is preferred until we can develop a spatial MEP model and test it with field observations.  

Consequently, a primary objective is to extend our MEP model to include spatial dimension and compare 

model predictions to observations collected from the environment at Siders Pond. 

 

4. Proposal Work Plan 
Our objective is to demonstrate that the MEP-based model can predict microbial biogeochemistry that 

occurs in natural environments (supporting the MEP conjecture), as well as determine if natural 

communities maximize entropy production locally or globally.  We are also interested in quantifying the 

optimization interval,   , that most accurately describes natural communities.  This latter question is 

fundamentally important as it provides the time scale over which natural communities have evolved to 

operate.  Two computational objectives are to extend the model to handle phototrophy and optimization 

over space.  

Siders Pond, located on the southern shore of Cape Cod, MA will serve as the study site, because this 

permanently stratified meromictic pond harbors populations of both oxygenic and anoxygenic 

photoautotrophs (green sulfur bacteria) as well as coupled redox cascades involving O, S, N and Fe.  The 

site has the advantage that redox cascades occur over meters rather than mm as found in sediments and 

microbial mats; consequently, the biogeochemistry and community genomics/transcriptomics can be 

readily sampled over space (and time). We note, however, that our objective is not to develop a detailed 

model for Siders Pond, but rather use it as an experimental system for testing the MEP model.  

4.1 Site Description: Siders Pond, MA 
Siders Pond was extensively studied between 1980 and 1983 (Caraco 1986), but we have continued to 

characterize the site for the last 15 years as part of MBL’s undergraduate Semester in Environmental 

Science (SES) Program that both PI’s are faculty of.  Siders Pond is a small (volume: 10
6
 m

3
; area: 13.4 

ha;  max depth: 15 m) coastal meromictic kettle hole 

that receives 1x10
6
 m

3
 of fresh and 0.15 x10

6
 m

3
 of 

saltwater each year.  The latter input occurs via 

episodic inputs during extreme tides and storm events 

via a small creek that connects the pond to Vineyard 

Sound approximately 550 m to the south. Tritium-

helium water dating shows a relatively high vertical 

mixing rate of 2.5 and 7.5 m y
-1

 across two observed 

chemoclines, but permanent stratification is 

maintained because the saltwater inputs enter the pond 

at depth, mix upward and become entrained with 

freshwater before exiting the pond (Caraco 1986).   

Caraco (1986) also characterized N and P loading to 

the pond (50 g N m
2
 y

-1
 and 1.3 g P m

-2
 y

-1
, 

respectively), and a N+P enrichment study (Caraco et 

al. 1987) shows phytoplankton to be P limited, 

especially in the low salinity surface waters.  

Our more recent depth profile surveys of dissolved 

constituents from SES students (Fig. 7) differ little 

from those surveyed in the early 1980’s. A steep 

oxycline occurs at approximately 3-4 m, and hydrogen 

sulfide begins to accumulate at 9 m (Fig. 7).  The peak 

in ferrous iron concentration at ~9 m is believed to be 

caused by the dissolution of iron oxides below the 

Fig. 7. Depth profiles of selected constituents taken in 
2004 form Siders Ponds, MA by SES students.  
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oxycline and the precipitation of iron sulfide in the bottom water. Formation of ferric phosphate in the 

surface waters appears to be a significant sink for phosphate and may reduce P availability to autotrophs 

by 30% (Caraco 1986). However, there could also be significant bacterial catalysis of the iron redox 

reactions, which this study will investigate.  

Siders Pond is eutrophic averaging 16 mg m
-3

 Chl a in surface waters (but can exceed 100 mg m
-3

 at 

times) and an annual primary productivity of 315 g C m
-2

. In anoxic bottom waters bacterial Chl c, d and 

e associated with photosynthetic green sulfur bacteria averages 20 mg m
-3

 (purple sulfur bacteria were not 

found in high concentration), but BChl cde was also observed to reach high concentrations at times (> 75 

mg m
-3

). Even though green sulfur bacteria could attain high concentrations, their productivity was only 

6% of the oxygenic photoautotroph (cyanobacteria + algae) production (Caraco 1986). Sulfur cycling was 

also investigated by a SES undergraduate (Nalven 2011) who cloned and sequenced dissimilatory sulfite 

reductase (dsr) genes and found the gene distributed throughout the anoxic portion of the water column, 

but dsr sequences in 12 m samples were genetically distinct from dsr found in 4 and 8 m samples.  

4.2 Siders Pond Sample Collection for MEP Model Testing 
For this study we are planning on sampling 1D spatial (vertical) biogeochemically relevant constituents 

and gene abundance/expression at only the diel time scale (not seasonal or annual).   Consequently, we 

will collect samples from a single station located at the deepest point in the pond (15 m) over a two day 

period in July or August of the first project year only. Samples will be collected over 8 depths and at 8 

different time points over the two day period (64 samples), which will allow us to examine the circadian 

rhythm time scale.  Samples will be analyzed for Chl a, BChl cde, NO3
-
, NO2

-
, NH4

+
, PO4

3-
, SO4

2-
, H2S, 

O2, Fe
2+, 3+

, salinity, T, pH, photosynthetic active radiation (PAR), dissolved inorganic carbon (DIC), 

particulate organic C (POC) and N (PON).  Primary productivity and community respiration will be 

measured at two depths corresponding to chlorophyll peaks for algae/cyanobacteria and green sulfur 

bacteria. 

4.3 Molecular Characterization 
In order to capture the genomic content of the most abundant organisms in Siders Pond, we will initially 

carry out deep metagenomic sequencing of the microbial community at 8 depths with the Illumina HiSeq 

platform. The metagenome will be characterized at only the first time point in the series as we do not 

expect population structure will change significantly over the two day period. We will analyze only 4 

samples per HiSeq lane using a partially-overlapping paired-end strategy, which should provide ~1100 

genome equivalents at each depth. This initial metagenome will be assembled into contigs and annotated 

to identify rRNA genes to assess population structure. The remaining reads will be annotated to identify 

functional marker genes that can be tracked in the transcript pool in subsequent samples. In this initial 

sequencing effort, we will also produce a metatranscriptome for each depth to directly compare genomic 

potential and gene expression patterns of microbial communities at each depth. These results will be 

critical to developing the model (see below). In all subsequent time points collected over the 2 day period, 

only metatranscriptomic analyses will be carried out to examine how gene expression patterns change 

over time and space. A metatranscriptomic approach that includes an internal standard will be used to 

allow for quantitative comparison across datasets (Moran et al. 2013).  

4.4 Comparison of Model Output to Observations 
The MEP model output includes concentration of biogeochemical constituents over depth and time that 

can be directly compared to Siders Pond observations collected over the two day period. The model will 

also predict the concentration of biological structure,   , for each functional group in the metabolic 

network (Table 1) over depth and time as well.  Since biological structure represents the amount of 

catalyst allocated to a functional pathway, it is directly proportional to gene abundance associated with 

the same function, so we will be able to assess model performance relative to observations in a manner 

similar to Reed et al. (2014), as illustrated in Fig. 8.  For example, abundance of dissimilatory sulfite 
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reductase (dsr) gene should be linearly proportional to the 

concentration of     associated with the sulfate reduction reaction 

(Table 1).  We expect the metatranscriptome to be more dynamic 

over the diel cycle (Vila-Costa et al. 2013).  The components of 

the MEP model that closely relate to relative transcript abundances 

are the reaction control variables,   , and reaction rates,   .  As    

approaches 1, reaction rate,    Eq. (3), is forced to 0, regardless of 

the amount of    allocated to the reaction.  Consequently, both 

reaction rate and    should be linearly proportional to transcript 

abundance and can be compare in a manner similar to that for gene 

abundance (Fig. 8).  

We will compare model output to observations for different values 

of the optimization time interval,   , that determines the duration 

of the temporal window over which entropy is maximized, (i.e., 

Eqs. 7 and 8) .  If we find that a good fit between model and 

observations can only be attained for large values of   , then this 

indicates that the community (or members of it) is implementing 

long duration temporal strategies (e.g., circadian rhythm).  

Similarly, we will use model fit to observations to determine if the 

community is best represented by local or global entropy 

maximization (Section 3.6), where a good fit to the global solution 

would indicate some level of spatial coordination of the community, such as via stigmergy (Gloag et al. 

2013), chemotaxis (Stocker and Seymour 2012), diel vertical migration of phytoplankton  (Inoue and Iseri 

2012) or zooplankton (Steinberg et al. 2002, Haupt et al. 2010) or even communication by vesicle release 

(Biller et al. 2014).  Our primary measure of success in this project will be the degree to which chemical 

and genomic observations can be captured by our MEP model using relatively few adjustable parameters, 

such as we were able to achieve in modeling methanotrophic communities (Vallino et al. 2014). 

 

5. Proposed Model Development  

5.1 Metabolic Reaction Network 
The initial set of reactions we plan to include in the metabolic network are shown in Table 1, which is  

based on our current understanding of the dominate biogeochemical processes  occurring in Siders Pond; 

however, this set will be updated based on findings obtained from our metagenomic survey. 

Decomposition of detrital C, N and P (        ) are represented by first order kinetics (Rxns 18-20 in 

Table 1) because rates are not determined solely by extracellular enzyme concentrations (Dungait et al. 

2012). Abiotic reactions involving iron are also included in the network (Rxns 16 & 17 in Table 1). In 

Section 3.2, we discussed how chemotrophic reactions are represented, but we have not considered 

phototrophic reactions in the MEP context yet.  Part of the proposed work will be to expand the MEP 

model to include phototrophic-based reactions, as outlined below.  

Table 1. Initial list of reactions that will be included in the metabolic network used to model 
biogeochemistry in Siders Pond. To reduce clutter, all biological structures below have the same 
elemental composition of          , and stoichiometric details needed to balance H and O are not 

shown, nor have we included how we account for variable substrate preferences (i.e, NH3 vs HNO3) in 
subreactions (but see Vallino et al. 2014). 

Rxn Metabolic Network Reactions 

 Catalyzed Aerobic Reactions 

1                            
     

  
→              

      

Relative Gene 
Abundance

Relative Transcript 
Abundance

Modeled Si
concentration

Modeled and 
rxn rate 

Concentration or Rate

D
e

p
th

Fig. 8. Example of how model outputs 

will be compared to metagenomic and 
metatranscriptomic data.  This 
example shows a “good fit” between 
model and observations. 
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As described previously, the phototrophic reactions will be built around optimal control variables,   , that 

dictate whether a reaction leads to more biological structure synthesis (autocatalysis), or simply dissipates 

free energy as heat (entropy).  We only focus on oxygenic photoautotrophs here, as the approach is 

readily extended to anoxygenic photoautotrophs and photoheterotrophs (see Table 1).  Oxygenic 

photoautotrophs can be represented as, 

                            
     

  
→              

      (9) 

where    has an elemental composition of          . In phototrophic reactions high frequency light, 

  , is converted to low frequency light,   , as a function of intercepted photons captured by phototrophs 

(   
, see below), and   and    are Planck’s constant and Avogadro’s number, respectively. The 

parameter    
 (mmol-photon mmol-rxn

-1
) is chosen such that as    approaches 1, 100% of the light 

energy is transferred to chemical potential, so that the overall reaction free energy equals 0.  Of course, 

this means the reaction proceeds reversibly and infinitely slowly.  At the other extreme, when     

approaches 0, all light energy is dissipated as heat and no biological structure is produced.   

Light intensity (mmol photons m
-2

 d
-1

) as a function of water depth,  ( ), can be determined by solving 

the following standard light equation, 
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where    and    
 are light attenuations due to water and biological structure   , respectively (detritus 

and sediment can also be added as needed).  In the MEP formulation, any interception of light leads to 

entropy production if it is not converted to chemical potential, so silt laden water dissipates light energy 

as effectively as phytoplankton.  Consequently, increasing entropy production can be achieved via the 

formation of particles when none are present, which is effectively what phytoplankton achieve in the 

MEP context.  To formulate a MEP model for phototrophs, we are interested in the light intercepted by 

each biological structure at a given depth   , designated as    
(  ).  For a well-mixed system of depth   

(or a differential layer of thickness  ), the light captured only by biological structure    is given by, 

    
( )   ( )     ∑ 

    
   

 

   

(       
   

 
) (11) 

Hence, by increasing the concentration of    
, the amount of light intercepted by    and potentially 

dissipated as heat increases, but the function does saturate at high    concentrations as required. 

Phototrophic reaction rate is modeled similarly to Eq. (3), but with the following modification, 

    
   

( )

   
 

  
 ∏(

  

       
 )

 

  (   
 )  (12) 

where    is the concentration (M or mmol m
-3

) of substrates (H2CO3, NH3 and H2S for example).  In Eq. 

(12), light capture rate,    
( ), governs the maximum reaction rate, which in turn depends on    

 as given 

by Eq. (11). The term   (   
 ) is the thermodynamic force (Jin et al. 2013) that limits reaction kinetics 

as Gibbs free energy of reaction,    
 , approaches 0.  In our current kinetic expression, Eq. (3), we have 

approximated this term with (    
 ), but a more formal expression for   (   

 ) will be investigated as 

part of our model development.  

A variation of Eq. (5) summed over all reactions in the network is used to calculate internal entropy 

production, but the free energy of reaction for the phototrophic reactions is given by, 

    
       

       
       (13) 

where    
  is the Gibbs free energy of reaction for synthesis of    from H2CO3 and other substrates, and 

   is the thermodynamic efficiency for converting electromagnetic radiation into chemical potential, as 

given by Candau (2003), 

      
 

 

  

  

 
 

 
(
  

  
)

 

  (14) 

where    and    are the black body temperatures (K) associated with the high and low frequency 

light, respectively, driving the phototrophic reactions.  For solar radiation,           and 

        , so that       . 

5.2 Vertical 1D Transport Model and Computation 
We will use a lake 1D advection-dispersion-reaction (ADR) model (e.g., Riley and Stefan 1988) to 

simulate vertical transport in Siders Pond for the mass balance modeling component, e.g., Eq. (6).  This 

model will be similar to our longitudinal ADR model used to simulate estuarine oxygen dynamics 

(Vallino et al. 2005), but we will use BACOLR (Wang et al. 2008) to solve the resulting PDE that 

employs a high-order adaptive collocation numerical algorithm, which we have found to be robust for 
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such problems. To improve computational performance, a second, lower resolution, computational grid 

will be used for the solution of the MEP optimal control problem to determine how control parameters, 

  (   ), will vary over space and time.  This is a computationally demanding problem,  but recently we 

have developed a promising approach that uses large-scale bound constrained optimization (Morales and 

Nocedal 2011) combined with a numerical derivative estimator (More and Wild 2012) implemented for 

parallel architectures using MPI.  Data from Caraco (1986) and students in the MBL SES program will be 

used to calibrate the transport model. 

 

6. Methods 

6.1 Nutrients 
The Ecosystems Center, MBL, has considerable experience and equipment for field sampling and 

measuring environmental constituents. Water samples from Siders Pond will be drawn over depth via a 

peristaltic pump with an inline YSI water quality sonde (pH, T, DO and conductivity).  Concentration of 

the following nutrients will be measured: NO2
-
 and NO3

-
 (via Lachat QuikChem 8000 autoanalyzer); 

NH4
+
  (Solorzano 1969); PO4

3+
  (Murphy and Riley 1962); SO4

2-
 by ion chromatograph ( DX-120 

Dionex); H2S spectrophotometrically (Gilboa-Garber 1971); dissolved O2 (by electrode); dissolved 

inorganic carbon (DIC) (via UIC Coulometrics (Johnson et al. 1993) or GC); dissolved iron by ferrozine 

(Stookey 1970); particulate organic carbon (POC) and nitrogen (PON) (on Perkin Elmer 2400 CHN 

elemental analyzer); Chl a and BChl cde by extracted Chl fluorescence (Caraco and Puccoon 1986).  

DAPI counts of bacteria and protists (Porter and Feig 1980); PAR with a LI-COR LI-193 spherical 

quantum sensor.  Autotrophy and respiration rates will be determined by in situ light-dark bottle 

incubations at two depths with H
13

CO3
-
 replacing H

14
CO3

-
 (Steemann-Nielsen 1951). 

6.2 Metagenomics and Metatranscriptomics 
For both DNA and RNA analyses, a peristaltic pump will be used to filter ~500 ml of water through a 

0.22 μm Sterivex cartridge (Millipore) with a 100 m pre-filter. Filters will be placed on ice, flooded with 

RNALater, and stored at -80 ºC approximately 18-24 hours after collection. DNA will be extracted 

according to Huber et al. (2007), quantified with PicoGreen, and metagenomic libraries will be 

constructed using the Nugen Ovation Ultra-low Library preparation kit (NuGEN Technologies). We will 

build ~170 bp libraries and use paired-end sequencing reads to get high-quality, slightly overlapping (by 

30bp) reads. Four metagenomic samples will be run per lane of the Illumina HiSeq 1000. Before RNA 

extraction, a known concentration of in vitro transcribed standard will be added to filter unit according to 

Gifford et al. (2011). RNA will be simultaneously extracted from both the Pond community and the 

internal standard using the mirVana miRNA Isolation Kit according to Shi et al. (2009). 

Metatranscriptomic libraries will be constructed using the Encore Complete Prokaryotic RNA-Seq DR 

Multiplex System (NuGEN Technologies), which carries out mRNA enrichment and cDNA synthesis, as 

well as size selection and multiplexed library construction for sequencing on the Illumina HiSeq platform. 

Like the metagenomes, we will build ~170 bp libraries and use paired-end sequencing reads to get high-

quality, slightly overlapping reads. Eight samples will be run per lane of the Illumina HiSeq 1000. 

After paired-end reads are merged and quality control is carried out, the reads will be dereplicated to 

remove sequences with 100% identity. Ribosomal RNA (rRNA) sequences will be identified using 

riboPicker software (Schmieder et al. 2011) and classified taxonomically using the ARB SILVA LSU and 

SSU databases (http://www.arb-silva.de). Reads will be assembled using MetaVelvet (Namiki et al. 

2012). For metatranscriptomes, the read coverage of the internal standard will be assessed by mapping 

assembled reads to the reference sequence, and abundance of cDNA reads will be determined by mapping 

the reads back to the assembled transcript fragments using Bowtie (Langmead et al. 2009). Gene 

annotations of non rRNA assembled contigs will be done through the Integrated Microbial Genomes and 

Metagenomics (IMG/M) system (Markowitz et al. 2008). Transcript reads will be mapped to predicted 

proteins using BLASTN and the internal standard will be used to normalize reads and allow for 

quantitative comparison across datasets (Gifford et al. 2011, Moran et al. 2013). All sequencing and 
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bioinformatics analyses will take place at the Josephine Bay Paul Center Keck Sequencing Facility at the 

MBL and data will be deposited into NCBI Short Read Archive. 

 

7. Broader Impacts 
With the projected increases in global temperature, atmospheric CO2 (and associated decrease in ocean 

pH), and nitrogen loading to coastal oceans and terrestrial ecosystems, there is a growing need to 

understand how biogeochemical processes that are largely governed by microbes will respond to these 

changes.  However, marine biogeochemical models have changed little over the last several decades 

(Rose 2012) due to the lack of understanding of the fundamental principles that govern microbial 

processes at the systems level.  Results from our project have the potential to change the organismal 

centric paradigm to one which is based on free energy dissipation.  Models based on fundamental 

principles can more accurately extrapolate beyond their calibration data set than conventional models. 

While many models can interpolate within observations, it is the ability to extrapolate predictions that is 

critically needed for society to understand how life supporting microbial systems are likely to respond to 

projected changes. We note, however, that entropy and MEP-based concepts and our mathematical 

modeling thereof can be abstruse to those outside of the field; consequently, one component of our 

broader impacts will be to also publish manuscripts that are more accessible to the broader scientific 

community, such as a manuscript we recently submitted (Chapman et al. submitted). 

We will work with the undergraduate programs at MBL to train new students at the interface of 

biogeochemical modeling, molecular microbiology, and microbial biochemistry. We will do this through 

both undergraduate classroom teaching and research projects and internships. First, PI’s Vallino and 

Huber are faculty in the Semester in Environmental Science (SES) program at MBL 

(http://courses.mbl.edu/SES), which annually draws up to 24 juniors and seniors from over 60 colleges 

and universities around the country. Classes average 84% women and several minority colleges and 

universities participate in the SES program. Greater than 40% of SES students go on to graduate school. 

A unique aspect of the SES program is the hands-on independent research project conducted during the 

last six weeks of the semester. SES projects are strongly coupled to existing PI research, and support of 

this proposal would provide the scaffold enabling independent research focused on understanding 

microbial dynamics and biogeochemistry, use of molecular techniques to measure species diversity and 

gene expression, and use of thermodynamics and models to predict biogeochemistry. SES students give a 

public presentation to the Woods Hole community and write “journal ready” manuscripts regarding their 

research that are published on the SES web site.  PI’s Vallino and Huber also co-teach the SES elective 

Methods in Microbial Ecology that uses a module-based approach. We will add a new laboratory module 

focusing on anoxygenic photosynthesis, such as differentiating bacterial Chl a from Chl a.  In each of the 

three project years, we will mentor from two to four SES independent student research projects associated 

with our proposed research.  

Second, we will seek undergraduate participation through the Woods Hole Partnership Educational 

Program (PEP) (http://www.woodsholediversity.org/pep/). PEP is specifically targeted to 

underrepresented groups in science, and while the undergraduates are hosted at individual institutions (e.g 

WHOI, MBL), they are treated as a “class” of students across the various participating institutions, 

allowing for exposure to multiple disciplines and approaches to research-based science. PEP students 

present their research results to the Woods Hole community at a one day PEP symposium in mid-August. 

The PIs in this project will train summer students in molecular techniques for assessing microbial 

communities and their role in the environment and/or use of models for understanding microbial 

processes.  

Finally, we will co-mentor a postdoctoral scholar. The postdoc will have a unique opportunity to engage 

scientists from both the Ecosystems Center and the Bay Paul Center for Comparative Molecular Biology 

and Evolution. The postdoc will actively be involved in the development of proposals, and will be 

allowed to gain teaching experience via our SES Methods course. In addition, the postdoc will participate 

http://courses.mbl.edu/SES
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in our weekly “Micro-Eco” Discussion Group, which facilitates cross-communication and collaboration 

between scientists engaged in microbial ecology research at our research centers and institutions in 

Woods Hole (see Mentoring supplementary material).   

 

8. Management 

8.1 Timeline 
In year 1 of the project, samples from Siders Pond will be collected over a two day period in July or 

August, nutrients will be analyzed, metagenomes and transcriptomes will be sequenced for the first of the 

eight depth profiles, and a bioinformatics pipeline for functional gene quantification will be developed.  

In year 2, the remaining 7 metatranscriptomes will be sequenced and quantified for functional gene 

abundance.  In year 3, observations will be compare to model predictions. Model development and testing 

will occur in all project years and includes: 1) expanding the metabolic network to include phototrophs; 2) 

development of a 1D transport model for Siders Pond; 3) implementation of parallel code using MPI to 

solve the spatiotemporal optimal control problem; 4) model simulation runs for comparison to 

observations from Siders Pond. 

8.2 Responsibilities   
PI Vallino will manage the overall project as well as develop the MEP-based model. PI Vallino will also 

be resposnible for integration between model output and experimental observations and will supervise 

nutrient analyses conducted by the part-time RA.  Co-PI Huber will manage all metagenomic and 

metatranscriptomic surveys. The postdoctoral scholar (TBD) will be responsible for sampling Siders Pond 

with assistance of the RA, as well as DNA and RNA sequencing and bioinformatics anayses.  Both 

Vallino and Huber will server as mentors to the postdoctoral scholar in their perspective areas of 

expertise, namely biogeochemistry and thermodynamic modeling (Vallino) and molecular microbial 

ecology (Huber). 

 

9. Results of Prior NSF Funded Research  
Theory: Biological systems organize to maximize entropy production subject to information and 

biophysicochemical constraints. EF-0928742, 9/2009-8/2013: $750,000. PIs: Vallino and Huber. This 

project examined the hypothesis that biological systems evolve and organize in a manner that results in 

maximum entropy production (MEP). One of the project's main hypotheses is that living systems differ 

from abiotic systems, such as fire, by integrating entropy production over time using information stored in 

the organismal metagenome. Experimental methanotrophic microcosms have been in operation for more 

than 1400 days and 454 pyrosequencing data from 19 different time points (> 10
6
 total sequence reads) 

shows bacterial diversity in the microcosms is very dynamic despite constant environmental conditions 

and includes > 50 species of methylotrophs plus methanotrophs. A MEP-based model developed during 

the project has been able to simulate observations using only two adjustable parameters. Model results 

indicate the communities are inherently well adapted to handling cyclic energy inputs up to periods of at 

least 20 days. While project data are still being analyzed, experimental and modeling results to date have 

been presented at 7 international conferences and numerous departmental seminars, four papers have been 

published (Vallino 2010, Vallino 2011, Algar and Vallino 2014, Vallino et al. 2014), one submitted 

(Chapman et al. submitted) and one soon-to-be submitted (Fernandez Gonzalez et al. to be submitted).  

Broader Impacts: The project has involved 7 undergraduate research projects and supported a 

postdoctoral scholar.  Microcosm data are still being streamed to the project web site 

(http://ecosystems.mbl.edu/MEP) in near real time. 
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