
Theory: Biological systems organize to maximize entropy production subject to 
information and biophysicochemical constraints. 

Project Summary 
Recently in the field of nonequilibrium thermodynamics, Dewar (2003, 2005b) presented a provisional 
proof on the theory of maximum entropy production (MEP), which posits that steady state systems with 
sufficient degrees of freedom will organize to maximize the rate of entropy production. While organized 
structures decrease the entropy of the system, they are maintained by external entropy production and 
have a higher probability of persistence if their presence increases overall entropy production. However, 
the configuration of structures that generate entropy, and dissipate energy, are constrained by system 
resources from which the structures must be synthesized from. Hence, biophysicochemical constraints 
limit the complexity of dissipative structures. Hurricanes that dissipate thermal energy between the 
atmosphere and ocean are examples of such dissipative structures. We propose that evolution by natural 
selection produce biological systems that tend to follow a pathway of maximum entropy production by 
dissipating high temperature radiation and chemical potential.  Consequently, an ecosystem composed of 
organisms that produce entropy at a high rate has a greater probability of persistence and occupation than 
an ecosystem under the same constraints that produces entropy at a lower rate. While MEP theory does 
not distinguish between abiotic and biotic systems, biological systems differ from abiotic ones in one key 
way: biological systems store information within their metagenome. Therefore, we propose that abiotic 
systems maximize entropy production by a steepest descent pathway, while information stored within the 
metagenome allows biological systems to produce entropy along pathways that can increase entropy 
production when averaged over time. For instance, by storing internal energy, biological systems can 
maintain entropy production and persist during periods when external energy inputs cease.  Based on our 
theory, we hypothesize that biological systems with greater information content will have higher entropy 
production rates than biological systems will lower information content. 

To test our hypotheses, we will employ flow through microcosms (i.e., chemostats) as experimental 
systems inoculated with natural microbial communities.  Changes in chemical composition will be used to 
determine entropy production and massively parallel 454 pyrosequencing applied to hypervariable 
regions in rRNA genes will provide a direct measure of the information content of complex microbial 
communities.  In addition to experimental tests, we will develop a mathematical framework based on our 
theory to model biogeochemistry orchestrated by biological systems using a distributed metabolic 
network representation. 

Intellectual merit: The current paradigm that governs ecosystem processes is not constrained other than 
by conservation of mass and energy.  Evolution by natural selection provides a mechanism by which 
complex structures can self organize, but confers no directionality to system evolution because the fitness 
landscape is as dynamic as the organisms themselves.  The theory of MEP under biophysicochemical and 
information constraints provides directionality, which would greatly advance our understanding of system 
evolution that is necessary understand energy and mass flow through biological systems and to predict 
how living systems respond to change.  In addition to our main research question, our experiments will 
significantly contribute to understanding of ecosystem function and community structure. 

Broader Impacts: To facilitate application of MEP theory across fields, computational models developed 
during the project and all experimental results will be distributed on a web site, where we will also 
develop content for K-12 and higher educational outreach. Feedback from the PIE-LTER Schoolyard 
program participants will guide web page content and development.  Experimental equipment and 
methods developed will also be used to expand an undergraduate course that the PIs currently CO-teach. 
The project will support one postdoctoral student, who will be mentored in an interdisciplinary field that 
crosses biogeochemistry, thermodynamics, information theory, and genomics. 
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Fig. 1.  A subset of possible 
methanogenic pathways 
[47, 124]. 

1. Response to Previous Panel Reviews 
This is the third submission of the proposal to the ATB competition.  Both previous submissions reviewed 
very well (E, E, G, and E, E, E, V, V, V), but neither made the funding cut.  In the second submission, we 
changed from DGGE community surveying to 454-tag sequencing, which reviewed favorably, so we 
focus our comments now on the last review that mostly concerned the proposed experiments.  The panel 
felt that the experiments need to demonstrate that community entropy production is at a maximum.  To 
address this, we have added new mathematical analysis (Section 4.5) and have introduced a new 
experiment (Exp. 1), which is intended to demonstrate optimality based on community structure.  We now 
use a methanotrophic-based community, as energy consumption can be readily monitored via CH4 uptake, 
and the fraction of resources allocated to its uptake can be measured using quantitative PCR of methane 
monooxygenase. The panel expressed concerns that more experimental data points would be useful, and 
in response we have increased the number of perturbations we will conduct.  However, as articulated in 
the ATB RFP, theory is typically not proven or falsified with just one set of experiments. In addition to 
our main research question, our experiments will significantly contribute to understanding of ecosystem 
function and community structure [109].  We have recently addressed the concerns of translating 454-tag 
sequences into species diversity [58]. Finally, we are unaware of techniques other than serial dilution to 
change community structure in complex microbial systems without introducing significant artifacts. 
2. Introduction 
The development of theory presented in this proposal derives from the basic question: What are the 
governing principles that determine how energy and matter flow through biological systems composed of 
independent but interacting individual organisms, such as occurs in ecosystems? Surprisingly, no 
predictive theory exists for such a fundamental question. While the theory of evolution by natural 
selection provides a mechanism for self-organization of complex biological structures, the theory is 
indeterminate in regards to the emergent properties biological systems follow, if any [88, 104]. To address 
this long-standing question, we will extend a theory from nonequilibrium thermodynamics to biological 
systems, and will also qualitatively draw upon information theory [2, 117].  Recently, Dewar [29, 31] 
provided a provisional proof that indicates steady state systems with many degrees of freedom will 
organize to a state of maximum entropy production (MEP).  As will be described in more detail below, 
entropy production in this proposal can be considered equivalent to energy dissipation.  Consequently, 
self-organization in a system that enhances energy dissipation will have a higher probability of 
persistence. Based on the MEP principle, the organized structure of a hurricane develops and persists 
because it facilitates dissipation of energy between the ocean and atmosphere [114]. By analogy, self-
organization in a biological system that enhances the degradation of chemical potential, such as oxidation 
of methane, will have an increased probability of persistence. While the MEP principle (MEPP) will form 
the basis of our extended theory, many questions must be addressed in order for MEPP to be useful in 
applications regarding energy and mass flow through biological systems. 
As derived by Dewar, MEPP does not distinguish between abiotic and biotic systems. While this allows 
general application of MEPP, most would agree that hurricanes differ from ecosystems, but what are the 
important differences in regards to MEPP? How does evolution by natural selection result in a MEP state? 
Thermodynamics applies to macroscopic properties of systems, as the ideal gas law describes, so what is 
the proper scale for application of MEPP to biological systems? Does MEPP apply to biochemistry, 
trophic interactions, or only to whole ecosystems? Can the rate of entropy production at the MEP state be 
predicted a priori for biological systems? Do systems always operate at the 
MEP state? How do resources available to biological systems constrain 
biological structure synthesis?  How does the evolution of the metagenome 
[49] affect the MEP state?  In this proposal we will address these questions 
and in the process derive the theory that biological systems organize to 
maximize entropy production subject to information and biophysicochemical 
constraints.  Experimental systems will be employed to test hypotheses 
derived from our theory and a mathematical framework for a predictive model 
will be presented and tested against experiments. 
While the concepts discussed in this proposal apply across all levels of 
biological organization, we will focus entirely on microbial systems because 
the concepts are easier to demonstrate due to the short characteristic 
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timescales and high levels of system organization microbial communities exhibit.  For instance, there are 
surprising regularities that result from competitive and cooperative interactions amongst organisms that 
are often independent of which organisms are present. Consider methanogenic microbial communities 
[47, 124]. In the absence of electron acceptors (O2, NO3

-, Mn4+, etc.) microbial communities convert 
glucose to methane and CO2. While no single organism conducts the overall catalysis, the number of 
microbial community configurations and metabolic pathways producing the same overall result is 
staggering (Fig. 1). Microbial systems are fascinating from an evolutionary perspective because the 
fitness landscape–chemical matrix–is intimately coupled to organismal evolution. Any successful 
mutation affecting a single organism will result in immediate alteration in system chemistry, which 
affects all organisms including syntrophic connections that the mutated organism depends upon. This 
tight coupling has led some to speculate that selection operates across a continuum of hierarchies [20, 21] 
as well as renewed theories on how such selection may occur [18, 45, 46, 91, 111, 112, 129]. While 
elucidating the mechanistic details that underlie community level cooperation is important, our focus is at 
a higher level that does not depend on these details. We posit that competition and cooperation among 
organisms is sufficiently nonlinear that emergent properties, such as the MEPP, result that are more 
predictable than the internal dynamics of the underlying community [15, 68]. In fact, predictability of 
internal community dynamics is likely not possible, except over short time scales [13]; hence the 
necessity to focus at the whole community scale. 
3. Background 
3.1 Entropy and Information Definitions  Even though entropy is precisely defined in thermodynamics 
[11], entropy's association with statistical inference and information theory leads to much confusion. In 
this proposal, entropy will refer to Clausius’ [26] original definition; the energy lost when converting 
internal energy into work. In this case, entropy arises from the atomic structure of matter, in which energy 
spontaneously disperses into lower energy states due to translational, rotational and vibrational 
interactions of atoms and molecules.  Under constant temperature and pressure, the energy that can be 
used for work  is Gibb’s free energy, which accounts for losses due to entropy.  Most importantly, if a 
chemical reaction occurs, such as combustion of methane, but all the energy liberated is dissipated as heat 
to the surroundings, then all the free energy is converted to entropy. Unlike energy, free energy is not 
conserved.  In fact, free energy is more accurately a measure of the energy that can be dissipated as 
entropy [77]. Hence, for processes of interest here, entropy production will be equated to chemical or 
radiative energy dissipation. Thermodynamic entropy is associated with the microscopic state of matter; it 
explains why a sugar cube spontaneously dissolves in water, but not the disordering of objects on a desk, 
which requires external energy dissipation [76]. Shannon entropy describes the latter. 
Due to mathematical similarities to statistical mechanics derivations of entropy of gasses by Boltzmann 
and Gibbs, Shannon [117] also used the term entropy in his original work on information theory.  
Shannon entropy refers to the amount of information that can be encoded into a message or sent over a 
communication channel. It is also referred to as algorithmic complexity [74]. In this context, entropy is 
associated with uncertainty. The ability to predict the next symbol in a message goes down as the 
information content (Shannon entropy) of the message goes up.  A message of only 1's has Shannon 
entropy of 0; it is quite predictable and contains no information.  Interestingly, a message with the 
greatest information content will appear as a sequence of random symbols.  As discussed by Adami et al. 
[2], in order for information to be useful it must be correlated with the physical world.  A random 
sequence of amino acids, while having high Shannon entropy, would produce a functionless enzyme, as it 
contains no useful information relative to the environment.  Likewise, an enzyme that processes CH4 is 
equally irrelevant if the environment lacks CH4.  We will use the term information, then, as Adami [1] 
defines it, which is also known as structural complexity or useful information. 
Finally, we note that Bayesian maximum entropy (MaxEnt) formulation [62], that has garnered interest in 
population ecology [32, 50, 120], is used to derive MEP [29], but should not be confused with MEP.   
3.2 Maximum Entropy Production Principle (MEPP)  Dating back to at least Lotka [80], who proposed 
that ecosystems organize toward a state of maximum power, there has been a significant amount of work 
in theoretical ecology that focuses on understanding the governing principles that organize ecosystems.  
In classic equilibrium thermodynamics, a state of maximum entropy and zero entropy production defines 
the resting state of a system [75], but biological systems are far from equilibrium and contain low entropy 
ordered structures that are maintained by external energy dissipation  [85, 116]. Consequently, there has 
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been a great deal of interest in nonequilibrium thermodynamic (or thermodynamically inspired) 
applications to living systems involving: power [80, 94], biomass to maintenance [81], minimum entropy 
production [108], exergy [84], ascendancy [130], emergy [95], energy dissipation [115], respiration [23, 
144], thermodynamic efficiency [89], constructal theory [12], as well as others [67, 128, 133, 145].  
However, the theories have not gained wide acceptance and are seldom employed to understand 
biogeochemistry. While many of the theories have a similar basis, they differ sufficiently to cause 
confusion, even though many have been shown to be more similar than different [36, 66].  Furthermore, 
many of the theories are based more on observational intuition than fundamental principles.  
Consequently, the biological community is faced with the conundrum of which theory is “correct” and 
which one should be employed, which has stifled advancement. 
Recently, there has been a renewed interest in the principle of maximum entropy production for 
nonequilibrium systems due to both theoretical and observational research. The original application of 
MEP dates to Paltridge [100], who demonstrated that if global heat transport between the tropics and the 
poles follows MEPP, one can accurately predict meridional heat flux, latitudinal temperatures, and 
fractional cloud cover. At the time, Paltridge’s work was discounted and believed to be coincidental 
[101]. However, it was later shown that the MEPP also accurately describes the climatology of Mars and 
Titan where the conventional assumption regarding heat transport fails [78]. Others have also speculated 
that ecosystems follow MEPP [126, 132], but without theoretical and experimental support, it garnered 
little attention. Dewar's [29, 31] analysis now provides a theoretical basis for the MEPP, as he derives a 
provisional proof for MEP for nonequilibrium steady state systems with sufficient degrees of freedom. 
The general conclusion from the MEPP is that systems will organize, within constraints, so as to 
maximize the rate of entropy production. MEP is consistent with most, if not all, of the intuitively based 
ecological concepts referenced above [36, 66].  MEP is an appealing extension to classic, equilibrium 
thermodynamics that dictates systems will move to a state of maximum entropy at equilibrium.  In 
essence, MEP indicates systems will attempt to achieve equilibrium via the fastest allowable pathway. 
Equally desirable, the MEP principle does not distinguish between biotic and abiotic systems so can be 
applied generally. 
Dewar’s approach is based on the maximum entropy postulate of Bayesian inference developed by Jaynes 
[61] and uses statistical mechanics reminiscent of Gibbs original work on entropy for equilibrium systems 
[41]. To arrive at the MEP principle, Dewar uses a probabilistic argument involving microstates and 
macrostates for steady state nonequilibrium systems; the premise being that a system is most likely to be 
found in the macrostate that has the most number of microstates. Dewar shows that this occurs with the 
macrostate of maximum entropy production [cf. 79]. Unlike Hamiltonian systems, there is no requirement 
that systems operate at MEP, but MEP does serve as a dynamical systems attractor. The MEP principle 
provides a useful means of describing how complex systems function, and there now exist several 
examples where this appears to be the case. When ocean circulation models are perturbed, they transition 
to new steady states with higher entropy production rates [119]. The laminar to turbulent flow transition 
in smooth pipes can be predicted from MEPP [82].  Beach profiles organize so as to maximize dissipation 
of incoming wave energy [63]. Entropy production governs growth morphologies of crystals [52]. 
Kirchhoff's loop law for electronic circuits can be derived from MEP [152] and MEP also explains other 
properties of electrical systems [24]. Several applications of MEP exist for climate systems [71, 72, 97, 
98, 102, 141], including plant transpiration [142]. These examples provide a strong foundation for our use 
of MEPP as a guide to determine how and why biological systems organize. 
4.  Proposed New Theoretical Directions 
While MEPP has been gaining acceptance in the physical sciences, its validity and application to 
biological systems remains uncertain.  Much of the uncertainly results from the organismal perspective 
used to understand ecosystem processes, which we believe is an inappropriate scale for considering 
MEPP.  Below we will discuss new ideas for conceptualizing biological systems that are consistent with 
MEPP and will form the base of this proposal. 
4.1 Microstates and Macrostates  The MEPP requires that a system must have many degrees of freedom; 
that is, many different microstate configurations that produce the same entropy producing macrostate. 
Gibbs’ (and Boltzmann’s) analysis of gasses using statistical mechanics provides an example [41].  In this 
case, pressure, volume, and temperature represent macrostate properties, while velocities and positions of 
molecules represent the microstates. Of course, there are an enormous number of different microstates 
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that produce the same macrostate.  In this proposal, we extend the concept of microstates to biological 
systems. Here, a microstate refers to the organisms present and their connectivity in an ecosystem. 
Based on MEPP, there should exist many different species configurations and connectivities that give rise 
to the same entropy producing macrostate.  Over appropriate timescales, species composition and their 
trophic relationships dramatically change, as has been observed in methanogenic [38], nitrifying [48] and 
planktonic communities [13] that exhibit dynamics primarily at the species level while maintaining 
functional stability; a kind of dynamic degeneracy [33]. Indeed, multiplicity of biological microstates 
appears consistent with neutral theory [110], provided the different configurations are functionally 
complementary.  Due to the large number of microbial species and their high abundances [40, 122], the 
microstate analogy is most applicable to microbial systems, which will be our primary focus. 
4.2 Biophysicochemical Constraints  In any implementation of MEPP, system constraints are critical in 
determining the relevant solution and the rate of entropy production at MEP [27]. In fact, Prigogine’s 
original work on minimum entropy production [107] is actually a special case of MEP where the degrees 
of freedom (the boundary conditions) are constrained [24, 30]. As example, consider a flammable gas 
mixture of methane and air. If there is a continuous supply of CH4 and O2 and combustion is initiated, 
then a continuous flame will be produced.  If no work is done, then all the free energy of combustion is 
converted into entropy.  In this case, the process is operating at the MEP state, where the magnitude of 
entropy production is constrained by the kinetic theory for gasses, which we could calculate a priori.  We 
consider this type of abiotic process operating in a steepest descent mode, where the rate of entropy 
production is maximized at any instance in time, subject to constraints.  For analogy, water flowing 
downhill follows a steepest descent trajectory. Hurricanes also dissipate energy in a steepest descent 
mode. What happens, however, if the CH4-O2 mixture is outside its flammability limits? 
Outside the flammability limits, CH4 and O2 still react in a steepest descent mode, but the reaction 
proceeds extremely slow. The reaction rate can be accelerated considerably by addition of a catalyst, but 
for self organizing systems, the catalyst must be created from CH4 and O2 and/or materials contained 
within the system. The reaction rate, and entropy produced, depends on the effectiveness and quantity of 
the catalyst. An insufficient amount of catalyst limits the reaction rate, but too much catalyst wastes 
resources. If the catalyst contains internal energy, which it is likely to, then over-synthesis of catalyst is 
inconsistent with MEP, because entropy could have been produced instead of catalyst.  The catalysts 
effectiveness (i.e., reaction rate per unit mass) depends on its molecular structure, which in turn depends 
on the resources available to construct it. Given the common elements (C, N, O, H, S, P, Fe, Mn, Cu, Co, 
etc), what is the most effective catalyst that could be constructed?  Obviously, this is an extremely 
difficult question to answer given the tremendous number of degrees of freedom. We know the extreme 
upper bound would be the complete removal of the reactions activation energy, but how much the 
activation energy can be decreased is constrained by the elemental resources used to build the catalyst.  
Consequently, unlike the relatively simple kinetics of combustion, we cannot determine a prior what the 
maximum reaction rate is nor what the maximum entropy production rate could be. Experiments are 
necessary, as well as including our understanding on the stoichiometric limits imposed on biological 
structures [34, 125]. 
4.3 MEP by Individuals or Ecosystems?  Of course, the catalysts of interest here are enzymes, but we 
include the organisms that synthesize enzymes as part of the catalyst. Continuing our example, we know 
from experiments that methanotrophs catalyze methane oxidation as follows, 

+−+→+ 2MM
M

24 CO)1(MOCH εε  (1) 

where methanotrophs, M, both catalyze the reaction and are produced by it (the reaction is autocatalytic 
[131]) as a function of their growth efficiency, Mε . The question we address here is how might evolution 
by natural selection lead to a system that maximizes entropy production?  The competitive exclusion 
principle [7] tells us that the organism with the fastest growth will dominate at the exclusion of all others.  
To achieve fast growth an organism must balance efficiency versus speed. In (1) above, if Mε  is close to 
unity (high efficiency), the reaction will proceed slowly due to thermodynamic constraints (see Section 
7.1 below) and methanotroph productivity will be low.  As Mε  approaches 0 (low efficiency), the 
reaction will proceed rapidly, but once again with low methanotroph productivity due to low efficiency.  
Between 0 and 1 lies an optimum Mε  that maximizes methanotroph productivity that is selected for by 
evolution, but this value does not maximize entropy production because too much methane contributes to 
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methanotroph biomass.  Consequently, we conclude that growth of individual organisms as selected for 
by evolution does not follow MEPP. However, natural ecosystems are not composed of a single species, 
as grazers, G, are always present to consume prey, such as methanotrophs, as given by, 

+−+→+ 2GG
G

2 CO)1(GOM εε  (2) 

which is also an autocatalytic reaction that produces exponential growth. Of course, grazers of the 
methanotroph-grazers are often present, as well as detritivores. Extending this logic naturally leads to 
food webs observed in nature.  A net result of all the predation is that the total biomass in the system is 
constantly turned over. It is possible to have all organisms growing at their maximum rates without any 
biomass accumulation, which could lead to an MEP state.  Hence, it is necessary to have a food web of 
prey and predators in order to achieve MEP. If we do not distinguish species, then the system exhibits 
large-scale cannibalism. The predator-prey interactions also insure biological structures are continuously 
and dynamically reallocated to those reactions that could assure MEP under changing conditions. 
4.4 MEP, Information and Timescales  Interestingly, the effectiveness of methanotrophs to catalyze (1) 
depends on information stored in their genome, which specifies how to construct staggeringly complex 
organic structures from resources available in the environment. Likewise, predators and other organisms 
contain information on consuming live and dead biomass.  Over evolutionary time, enzymes associated 
with methanotrophy would presumably improve [1], so that less protein is needed by modern 
methanotrophs than ancient methanotrophs to attain the same reaction rate. Hence, the amount of entropy 
produced for a given amount of protein changes with evolution, as well as with the introduction of new 
enzymes all together. For instance, MEPP predicts the evolution of oxygenic photosynthesis, because 
entropy production rate per unit biomass is higher with O2/H2O redox reactions than anaerobic 
photosynthesis based on SO4

2-/ H2S. But information embedded in the metagenome makes it difficult to 
predict maximum entropy production in biological systems from first principles as can be done with 
physical systems and demonstrated by Paltridge [100]. As metagenomic sequencing and annotation 
capabilities increase [151], this information can be used as further constraints. However, metagenome 
sequencing is still prohibitively costly, so in this proposal we will use a proxy for information content 
based on short ribosomal “tag” sequences as discussed in Section 6.5, as well as rely on simple metabolic 
networks for constraints.  Information also permits biological systems to integrate entropy production 
over time and circumvent the steepest descent pathway of abiotic systems. 
As discussed above, maximum entropy production rate for a flammable mixture of CH4 and air is dictated 
by gas kinetics. While combustion is the MEP solution, it tends to destroy order structures, so has only 
short persistence. If a perturbation extinguishes the flame, the CH4 and air mixture will accumulate until a 
serendipitous spark is reintroduced. Consequently, there can be periods of massive entropy production 
followed by long periods of no entropy production (and combustion never occurs if the mixture falls 
outside its flammability limits). If a catalyst is introduced, such as methanotrophs, then entropy can be 
continuously produced over substantial transients. Even though the instantaneous entropy production will 
be lower with methanotrophs, the average rate of entropy production will exceed that of the sporadic 
steepest descent route.  
If MEP follows only steepest descent pathways, then not only should CH4 be oxidized, but all biomass as 
well, as this would produce the greatest instantaneous entropy proudction. However, if time-averaged 
entropy production is maximized [86], then allocating some CH4 to methanotrophs and grazers increases 
entropy production over the integration interval. Unlike physical systems, biological systems have the 
capability to predict the future, where the information to do so is contained within the system 
metagenome. For instance, deciduous forests store some resources during the growing season that allows 
them to maintain dormancy over the winter or dry period, which requires expectations of future 
conditions. Microbes also exhibit temporal strategies such as spore formation and luxury uptake 
mechanisms [14, 69]. When considering biological systems, strategies are not instantaneous, but are 
integrated over time based on a prediction of the future that has been selected for by evolution. 
Consequently, by avoiding the steepest descent pathway, information can allow a system to produce 
entropy even when confronted with perturbations. Of course, perturbations of sufficient magnitude will 
disrupt biological systems as well. Nevertheless, we postulate the difference between abiotic and biotic 
processes is that the former always follows a pathway of steepest descent, while the later follows a 
pathway dictated by information that leads to greater entropy production when averaged over time. We 
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speculate the MEP asymptote occurs when entropy production is averaged over infinite time and space.   
Of course, the two pathways are always competing, such as occurs when fire consumes a forest. Pathways 
of averaged entropy production may be flanked by pathways of steepest descent. 
4.5 MEP Independent Variable(s)  Entropy production (EP) is the dependent variable in MEP, but what 
is the independent variable(s) of the optimization? In the original work of Paltridge [100], the independent 
variable was heat transport from tropics to pole.  As modeled heat transport was varied between 0 and ∞, 
entropy production exhibited a maximum, where the predicted heat transport at MEP corresponded to that 
observed.  For biological 
systems, we propose that 
organization of biological 
structure (i.e., species 
composition, trophic 
configuration, etc.) is the 
independent variable in that 
different species 
configurations produce 
entropy at different rates, 
with only some 
configurations producing 
MEP.  We will illustrate this 
concept with a numerical 
experiment involving a 
methanotrophic community 
in a chemostat sparged with 
CH4 and air with a mineral 
nutrient feed.   
The model (Box 1) uses the standard aggregated compartment approach where methanotrophs, m(t), 
consume dissolved methane, c(t), and nitrogen, n(t), for growth and are preyed upon by grazers, g(t).  
Methane is sparged into the chemostat at partial pressure p(t).  Ten kinetic growth parameters 
( ρχχϕϕεε ,,,,,,,,, gmgmmnmc

Max
g

Max
mgm kkk ) involving two Monod-type equations ( )(),,( mcn gm ϕϕ ) 

govern the growth of methanotrophs and grazers.  A subtle but important aspect of these types of models 
is that both m(t) and g(t) each represent a diverse community of methanotrophs and grazers, respectively.  
Consequently, different model parameterizations must be used for different community configurations, 
and each parameterization will produced different state dynamics (Fig. 2).   
From nonequilibrium thermodynamics, it can be shown [35 pp. 131-141] that the rate of entropy 
production for a chemical reaction is TGr r /∆− , where r is reaction rate (mole L-1 d-1), rG∆  is the Gibbs 
free energy of reaction (J mole-1), and T is temperature (ºK).  So the rate of entropy production for the 
model in Box 1 is approximately given by, 

[ ] TtgGtmGGGtS gggmmmm /)())1(()()))1((()( 3321 χϕεχϕεε +−∆+∆+∆+−∆−=  (3) 

where iG∆  i = 1, 2 and 3, are the free energies of CH4 oxidation to CO2, CH4 oxidation to CH2O, and 
CH2O oxidation to CO2, respectively.  Since the free energy of biomass synthesis is close to zero (slightly 
negative in fact), we treat biomass as glucose here for simplicity [9].  
Not surprisingly, different parameterizations of the model (Fig. 2) 
produce entropy at different rates based on (3), and certain parameter 
choices maximize entropy production.  For example, if we hold all 
parameters constant except kgm, and plot entropy production for the 
steady state solution of Box 1 eqns. at a dilution rate of 1.0 d-1 with 
10 µM DIN feed for differ values of kgm, MEP occurs at kgm = 30 µM 
(Fig. 3, blue line).  If we keep N loading the same, but decrase 
dilution rate to 0.1 and 0.01 d-1 (100 and 1000 µM DIN), MEP 
occurs at kgm values of 245 and 1080 µM, respectively (Fig. 3).  
Since kgm affects g(t), Fig 3 shows that too few or two many gazers 
will result in suboptimal entropy production.  Manipulating any 

Box 1. Methanotrophic community model. 
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Fig. 3. SS entropy production at 
different dilution rates but with same 
N loading. MEP occurs at black dots. 
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Fig. 2  Transient solutions for eqns. in Box 1 for 6 different parameterizations. 
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kinetic growth parameter produces similar curves that exhibit maximums.  We conclude from this simple 
example that only certain species and community configurations will maximize entropy production for a 
specified set of conditions; a random assortment of organisms will not. We hypothesize that communities 
will organize, and give time will evolve, towards the state of MEP.   
4.6 Distributed Metabolic Networks  The numerical example above also illustrates the problems with 
current approaches to modeling biogeochemistry at the organismal level because no theory exists on how 
community composition changes as drivers change. As a result, current computational models are brittle 
to changes in communities. Instead of focusing at the organismal level, we will pursue a functional 
representation using a metabolic abstraction. Ideal MEP constraints for a biological system would arise 
from complete annotation of the metagenome to establish metabolic capabilities; although, predator 
preferences and prey avoidance mechanisms would also have to be accounted for. For complex natural 
communities, this type of information is still many years away; consequently, for this proposal we use a 
distributed metabolic network to represent community processes.  
Although biologists have typically focused at the organism level, this perspective can hide aspects on 
ecosystem function. For instance, in examining terrestrial below ground processes, emphasis is often 
placed on the symbiotic relationship between plant and mycorrhizae. While understanding these 
interactions at the organism level is extremely important, at the functional scale, root, root hair, and 
mycorrhizae hyphae resemble a space filling fractal network [146] that effectively extracts resources from 
the soil matrix (Fig. 4). Similarly, the Riftia-sulfur bacteria symbiosis found at hydrothermal vents 
appears to be an efficient design for facilitating transport of H2S plus O2 laden water to sulfur bacteria 
reaction centers, which resemble a packed-bed bioreactor (Fig. 5) that effectively reduces mass transport 
limitations faced by bacteria [70]. The fact that these metabolic and structural 
organizations are distributed among species is not relevant to our focus. When 
looking at metabolic capabilities of microbial systems, we often find that 
metabolic function is distributed amongst all three 
domains of life (Bacteria, Archaea and Eukaryote), 
such as in methanogenic networks [143], microbial 
mats [139], Winogradsky columns, and almost 
anywhere redox cascades occur [99]. Since the 
species that comprise metabolic networks can 
undergo substantial substitution with only minor 
impact on functional characteristics [37, 150], we 
will view microbial systems as metabolic networks 
that can be distributed in space and time, but 
resemble multicellular organisms [118, 149].  The 
abstraction applies to higher organisms as well, but 
their functional contribution must be identified, 
such as mastication, filtration, transpiration, etc. 
5. Hypotheses 
Our overarching theory is that biological systems organize to maximize entropy production subject to 
information and biophysicochemical constraints. Based on theory developed in Section 4 above, we 
propose several hypotheses below that we will test experimentally.  Furthermore, we will also develop a 
mathematical framework based on our theory to predict how biological systems organize to process 
energy and matter. We propose the following hypotheses: 

H1. Ecosystems adapt and evolve complementary trophic structures that maximize entropy 
production. Perturbations that cause alterations in trophic structure (i.e., too few or too many 
grazers) temporarily reduces entropy production by the system.  We will challenge microbially-
based chemostats with alternative microbial communities to demonstrate optimum performance 
of the adapted community. 

H2. Removal of information from biological systems will cause them to operate at lower entropy 
production rates. A biological system with reduced information may lack processes to fully 
dissipate available energy.  To test this hypothesis we will use microbial chemostat experiments 
where information is removed by serial dilution.  Entropy production will be compared to species 

 
 

CO2
H2S
O2

SO4
2-

CO2
H2S
O2

SO4
2-

 
Fig. 5. Riftia with sulfur 
bacteria symbionts.  

 

 
Fig. 4. Mycorrhizae 
colonizing root hair. 



 8 

richness. 
H3. Information stored within the metagenome allows entropy production to be averaged over long 

timescales, so that biological systems can maintain entropy production during perturbations and 
periodic changes in system drivers. We will test this hypothesis by comparing chemostat 
experiments with continuous energy input to those with periodic energy input and monitor 
entropy production and species richness.  

The Null hypothesis is that biogeochemistry depends solely on what species are present.  If species 
composition is altered, biogeochemistry and entropy production will change.  Below we describe the 
experiments that will be used to test hypotheses H1-H3.  In Section 7 we develop a mathematical model 
based on MEPP that we will use to predict biogeochemistry in our experimental systems. 
6. Experimental Approach 
6.1 Experimental Apparatus  While our MEP-based theory is applicable to natural ecosystems, 
laboratory microbial systems are ideal for testing of our hypotheses for the following reasons: 1) even 
dilute microbial systems contain greater than 109 organisms with thousands to possibly tens of thousands 
of “species” per liter [122], thereby insuring many degrees of freedom and extensive metagenomic 
information; 2) they have fast characteristic timescales which allow us to complete experiments in months 
rather than decades; 3) they can be maintained in laboratory environments, extensively sampled and 
manipulated; 4) our new molecular techniques allow us to measure species richness to unprecedented 
depth [57, 122]. 
All of our experiments will involve methanotrophic communities and be conducted in replicate 3 L 
chemostats mixed with cell-culture impellers, outfitted with pH and DO probes, and maintained at 20ºC 
within dark environmental chambers. Although a similar system could be based on phototrophs, the 
methanotrophic system has the advantage that energy acquisition by the microbial community can be 
directly measured.  Chemostats will be sparged with a 5% methane in air mixture via mass flow 
controllers that permit precise measurements of CO2 production and CH4 and O2 consumption rates from 
on-line gas analyzers that employ laser diode absorption spectroscopy for CO2 and O2 (Oxigraf) or NDIR 
for CH4 (CAI). A sterilized mineral salts medium (NO3

-, PO4
3-, salts, and trace metals [17]) of a specified 

concentration and dilution rate will serve as the input feed. Similar methanotrophic microcosms have 
been running continuously in our lab for more than three years now (Fig. 6).  In addition to standard 
biogeochemistry measurements (see Section 6.6), our primary measurements will be entropy production 
rate and community composition.     
Since no work is derived from the chemostats, all CH4 oxidized will be dissipated as heat to the 
surroundings; consequently, the rate of entropy production can be readily calculated from changes in 
chemical composition between input and output flows and accounting for accumulation (or loss) in the 
reactors.  Species richness of Bacteria and Archaea will be assessed using massively parallel 454 tag 
pyrosequencing of hypervariable regions of the rRNA gene (see Section 6.5).  Direct microscopic counts 
will be used to assess species richness of eukaryotes, as well as new 454 approaches. We will also 
quantify methane monooxygenase genes via 
quantitative PCR (qPRC)  relative to total protein, as 
our simple model (Box 1 above) shows that to 
maintain MEP the ratio of methanotroph to total 
biomass decreases as dilution rate decreases. 
6.2 Experiment 1, Test of H1 As discussed in Section 
4.5, communities organize towards a state of MEP, 
but the particulars of the community structure depend 
of external drivers, such as the dilution rate and 
nutrient loading in a chemostat.  This experiment will 
involve three treatments in duplicate (6 chemostats in 
all) with the same N loading rate of 10 µmol N L-1 d-1, 
but at the following dilution (D) rates: E1-T1: D=0.03 
d-1, 333 µM N; E1-T2: D=0.1 d-1, 100 µM N; E1-T3: 
D=1.0 d-1, 10 µM N.  Each chemostat will be 
repetitively inoculated (5% v/v) every 2 weeks with 
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whole water collected from a local pond until addition of inoculum no long affects respiration, which will 
ensure development of a complex community essential for MEP.  Once all chemostats have reached 
steady state (SS) (ca 3-5 mo.), we will determine entropy production (EP) rate in each treatment and 
assess community composition via 454-tag sequencing, DAPI counts for eukaryotes and qPCR for pmoA.  
We will also sample community composition once per month during startup phase to assess changes in 
community structures, as it is possible that more than one community configuration may produce the 
same amount of entropy. We predict that communities in each treatment will differ significantly but will 
be functionally stable and operate at MEP. Based on Fig. 3, we also predict EP to follow: T1 > T2 > T1. 
Following SS operation, perturbation experiments will begin to show that changes in community structure 
will cause a decrease in EP (e.g. Section 4.5 and Fig. 3). 
The first set of perturbation experiments involve cross inoculation between treatments.  One liter from 
one treatment will be added to a different treatment as follows: T1 → T2; T2 → T3; T3 → T1.  Following 
cross inoculation, EP and community composition will be monitored for several months.  Since the initial 
SS communities will be at MEP, the inoculums will not be competent and will simply be washed out.  We 
will repeat the cross inoculation experiment in the reverse order as well (T1 → T3; T3 → T2; T2 → T1), 
but expect the same results.  For the final perturbation, we will swap dilution rates between chemostats 
and cross inoculate at the same time.  In this perturbation, we expect the inoculum to overtake the existing 
community as conditions for MEP will favor the inoculum. This experiment should take between 15-20 
mo. to complete. 
6.3 Experiment 2, Test of H2 In this experimental test of hypothesis H2, we will demonstrate that 
removal of information from the system by reducing species richness will result in lower entropy 
production.  Two treatments, in duplicate, involving chemostats at 0.1 d-1 dilution rate and 10 µmol N L-1 
d-1 loading will be started.  Treatment E2-T1 will be inoculated with the full microbial community (we 
will likely use two chemostats from Exp 1).  Treatment E2-T2 will be operated under the same 
conditions, but the inoculum will be serially diluted by a factor of 107.  To minimize mortality, we will 
use filter sterilized waste medium collected from the E1-T2 chemostats from Exp. 1. At 107 dilution, there 
is only a 1% probability that cells at a concentration of 10,000 L-1 will be found in the inoculum.  This 
will remove rare bacteria as well as remove large grazers such as ciliates and perhaps nanoflagellates.  
The inoculum will be grown under batch conditions until cell numbers approach typical values, then 
chemostat operation will begin.  We will measure entropy production and species richness as above.  We 
expect entropy production to be significantly reduced due to the removal of grazers that are necessary to 
maintain entropy production via resource cycling (Section 4.5). The experiment should run for 3-4 mo. 
6.4 Experiment 3, Test of H3  In the last experiment we will make use of our existing methanotrophic 
microcosms (Fig. 6) to demonstrate that information contained within the metagenome allows entropy 
production to be averaged over time (Section 4.4).  Microcosms will be cross inoculated to insure equal 
metagenomic content and will be converted to chemostat operation at 0.1 d-1 dilution rate with 10 µmole 
N L-1 d-1 loading.  Methane feed to two of the four microcosms will then be placed on a 50% duty cycle, 
with two days CH4 plus air and two days of just air (E3-T2).  Based on hypothesis H3, entropy production 
in both treatments (E3-T1 and E3-T2) should be equal when averaged over a 4 d period once transient 
dynamics and system adaptation have completed (ca. 3-4 mo.).  During the experiments microcosms will 
again be assessed for EP and community composition on an approximately monthly basis.   
6.5 Determination of Microbial Population Structure  The diversity of the microbial community 
(bacteria and archaea) in inocula and chemostats will be assessed using a 454 tag sequencing strategy that 
allows for extremely sensitive, relatively quick, and cost-effective screening of microbial diversity and 
generation of taxonomic inventories in individual samples [57, 122]. Sequence tags from hypervariable 
regions of small subunit ribosomal RNAs (SSU rRNA) provide descriptions of Operational Taxonomic 
Units (OTUs) in microbial communities.  Nearly unique rRNA tag sequences serve as a proxy for 
individual “species” or OTUs [58].  Enumerating the number of different rRNA tags provides a detailed 
description of the relative occurrence of specific microbes in a sample. For the development of predictive 
frameworks that link biogeochemical processes with particular microbial populations, we must have 
statistically significant assessments of microbial diversity, relative abundance, and community structure.  
The 454 tag sequencing methodology deeply samples a microbial population, thus allowing robust 
statistical predictions about the community.  It also includes detection of both dominant members and low 
abundance “rare biosphere” members [103, 122].  These rare organisms may become particularly 
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important under certain conditions in our chemostat experiments; hence, they may significantly contribute 
to system information.  The strategy exploits the massively parallel, pyrosequencing capability of the 
Roche Genome Sequencer Titanium (GSTi) system to sample the hypervariable regions from >1,000,000 
rRNAs in a single sequencing run without requiring the construction of recombinant clones or preparation 
of sequencing templates.  We will use a “keyed” primer approach [57] that allows us to tailor our 
experiments to include communities that may need to be unequally sampled, such as the bacterial 
communities which may demand upwards of 50,000 sequences, in comparison to archaeal communities, 
which may only need ~5,000 sequences.  DNA- and RNA-based methods will be used to assess both the 
total potential diversity of the system, as well as the diversity of only the active portion of the microbial 
community.  At any single time point, we can extract RNA or DNA, carry out reverse transcription PCR 
or regular PCR, and obtain community profiles by 454 sequencing.  In addition to examining ribosomal 
genes, we will also use PCR to follow changes in the abundance and diversity of methanotrophs.  This 
strategy uses the key enzyme responsible for the oxidation of methane to methanol, particulate methane 
monooxygenase [17], which is encoded by the pmoA gene.  This gene is highly conserved and present in 
all methanotrophs, therefore PCR primers can be designed for specifically amplifying pmoA out of 
environmental samples to determine their abundance and diversity [53, 83].  When sampling for total 
community profiles via 454, we will also carry out quantitative PCR of the pmoA gene.  For select time 
points, we will clone and sequence the amplicons to examine how changes in abundance of 
methanotrophs relate to changes in their phylogenetic diversity.   
For all samples, fluids will be collected on 0.22 μm Sterivex filter, DNA extracted according to 
Sinigalliano et al.  [121], and PCR amplicon libraries built or qPCR carried out.  Sequencing on the GSTi, 
qPCR, and data analysis will all be performed at the Bay Paul Center. Correspondence and other 
statistical analyses will be used to determine if complementary communities arise and how this relates to 
time of sampling or biogeochemical measurements using statistical tools in the R package (www.r-
project.org).  Since communities must recycle resources to attain MEP, we expect whole community 
shifts as opposed to simply removing one OTU and replacement by another.   
6.6 Biogeochemical Measurements  Concentration of the following nutrients will be measured to 
calculated entropy production and to allow model comparisons to observations (see Section 7.2): NO2

- 
and NO3

- (via Lachat QuikChem 8000 autoanalyzer); NH4
+  [123]; PO4

3+  [87]; O2 (by Winkler titration 
[73] and electrode); dissolved inorganic carbon (DIC) (via UIC Coulometrics  [65] or GC); dissolved 
organic carbon (DOC) and nitrogen (TDN) (via a Shimadzu TOC-Vcph for carbon and TNM-1 unit for 
total nitrogen); particulate organic carbon (POC) and nitrogen (PON) (on Perkin Elmer 2400 CHN 
elemental analyzer); DAPI counts of bacteria and protists [106], and SYBR Green I counts of viruses 
[90]. Both dissolve (DOM) and particulate (POM) organic matter will be characterized for total protein 
[96], which is proportional to total biological structure ( TS ).  
7. Development of a Metabolic Network Model Based on MEP 
An abridged description of the modeling approach is discussed below. Space limits the details that we can 
include, so this section is only intended to provide overview.  The basic model framework uses the 
metabolic network perspective discussed earlier, and a methanotrophic community in a batch reactor that 
is sparged with methane and air will serve as an example. The formulation is similar to how single cells 
control metabolism by regulating the synthesis and degradation of enzymes associated with pathways 
necessary for growth.  However, at the ecosystem level, metabolism is distributed amongst many phyla, 
and expression of metabolic pathways often occurs via changes in microbial species composition that 
have differing metabolic capabilities. 
7.1 Optimized Metabolic Ecosystem Network (OMEN) Model   Although a multi-trophic community, 
which includes Bacteria, Archaea, phage, protists and other microbial grazers, is ultimately responsible 
for environmental chemical transformations, organisms are not explicitly modeled because of the lack of 
information and the dynamic and potentially chaotic nature of communities at the organism level [13, 48, 
150]. Instead, a metabolic network synthesizes generic biological structure, S, which consists largely of 
enzymatic protein, but also represents other macromolecules expressed by microbial communities for 
growth and form. The biological structure can be allocated to any reaction in the network and serves as 
the reaction’s catalyst. The metabolic network also orchestrates energy and mass acquisition necessary to 
construct biological structure itself, where the MEP principle governs how biological structure is 
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Table 1.  Half reactions used for methanotroph metabolic network. 
Reaction Structure Rate 
CH4 + H2O → CH2O + 4e- + 4H+ S1 r1 

CH2O + 2H2O → CO2 + 4e- + 4H+ S2 r2 
O2 + 4e- + 4H+ → 2H2O S3 r3 
NO3

- + 8e- + 10H+ → NH4
+ + 3H2O S4 r4 

CH2O + NH4
+/ρS + 0.05e- → S S5 r5 

S → faC CH2O + (1- faC)dC + (faN NH4
+ 

+ (1-faN)dN) /ρS + 0.05e- 
S6 r6 

dC → CH2O S7 r7 
dN → NH4

+ S7* r8 
 * Note, S7 catalyzes both reactions 7 and 8. 
 

allocated to any metabolic reaction.  
The mathematical framework is general 
and can be extended to any biological 
system by expanding the distributed 
metabolic network based on knowledge 
from classic microbiology and 
metagenomics. One can also examine 
how the introduction or evolution of 
new metabolic functions alters resource 
allocation and system dynamics as well 
as examine dynamics when metabolic 
functions are removed. 
For our aerobic methanotrophic 
metabolic network example (Fig. 7), 
eight half reactions account for methane oxidation ( 321 ,, rrr ), including sugar biosynthesis ( 1r ), nitrate 
reduction ( 4r ) for biological structure synthesis from NH4

+ and sugars ( 5r ), and biological structure and 
detritus degradation ( 6r , 7r , 8r ) (Table 1). Each of the eight reactions has associated biological structure 
(S1…7), except for reactions 7 and 8, which are both catalyzed by the same structure, S7, to minimize 
model degrees of freedom. The use of half reactions (Table 1) increases the flexibility of the network to 
utilize available electron acceptors or donors, but to insure electron conservation all half reactions are 
coupled to an electron shuttle reaction as follows,  

)NADHHNADe2( - →++ ++
iε  (4) 

where iε  is the number of electron pairs produced by reaction i. Gibbs free energies are calculated for 
each reaction in Table 1 after coupling to (4). We use the 
approach of Alberty [4-6] to calculate the standard Gibbs 
free energy of reaction, which accounts for proton 
dissociation equilibria between chemical species (H2CO3 ⇔ 
H+ + HCO3

-, etc.) at a specified pH and temperature. The 
overall free energy of reaction, denoted as )(†

ir rG∆ , 
accounts for the concentration of reactants and products 
( )(tc ), and ionic strength, IS, is used to estimate activity 
coefficients [4]. For the methanotrophic network simulation, 
we use the following conditions: pH 7, IS 1.92 µM, at 20ºC.  
Free energy, enthalpy and entropy of formation for 
biological structure is based on Battley [8, 10] for bacteria; 
however, this is not critical as the free energy of living 
organisms is similar in value to the substrates they are 
constructed from. 
Of course, )(†

ir rG∆  represents the available or needed energy only if the reaction is run sufficiently close 
to equilibrium (i.e., reversibly), which is clearly not the case for biological systems. To account for 
inefficient energy transfer or energy production, all reactions are coupled to an energy source (or sink) 
reaction in the form of ATP hydrolysis (or synthesis) of the form, 

)PADPOHATP)(( i2 +→+tiη . (5) 

Even though we know most ATP reaction couplings from biochemistry, cells have the ability to dissipate 
ATP [113], and different organisms in a community can have different ATP couplings for the same 
pathways [51]. Consequently, we treat energy coupling, )(tiη , as a control variable to be determined by 
optimization. The combined whole reaction i consists of (4) plus (5) and half reaction i in Table 1. The 
Gibbs free energy of the combined reaction i, )(†

ic rG∆ , is then given by  

)()()(),( †††
ATPriiric rGtrGtrG ∆+∆=∆ η , (6) 
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Fig. 7. Simple distributed metabolic network 
for methanotrophic-base food web.  Seven 
biological structures, Si, catalyze the eight 
reactions. 
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where )(†
ATPr rG∆  is the Gibbs free energy of (5). By altering the magnitude and sign of )(tiη , an 

endergonic reaction can be driven forward, and by inefficient coupling of (5) with exergonic reactions, 
energy can be extracted at less than 100% efficiency, allowing the reaction to proceed at higher rates. 
This is the standard tradeoff between power and efficiency; operating reactions at high throughput 
necessitates low efficiency, while attaining high efficiency limits reaction rate, which all biotic and 
abiotic system must contend with [44, 105]. 
Metabolic network reaction rates are given by,  

)()()( cc T
i

K
iiii FFtr Sν=  (7) 

where νi is an experimentally determined rate constant per unit of biological structure allocated, )(tiS  is 
biological structure allocated to reaction i, and )(cK

iF  and )(cT
iF  are kinetic and thermodynamic forces, 

respectively. The kinetic force is given by the general form, 
ji

j jij

j
iATPATPiNADHNADH

K
i Kc

c
ffF

,

,

),(),()(
Φ

∏ 










+
= ηζεζc  (8) 

where jc  is the concentration of substrate j, and the matrix element, ji ,Φ , equals 1 if reaction i consumes 
substrate j; otherwise ji ,Φ  is zero (Table 1). To ensure electron and energy conservation, we assume 
biological structure has a fixed amount of NAD+NADH and ADP+ATP storage per unit of total 
biological structure, ∑= i iT SS , as specified by the constants Tot

NADHζ  and Tot
ATPζ , respectively (µmol 

(mmol ST)-1).  The functions ),( iNADHNADHf εζ  and ),( iATPATPf ηζ  are simple Michaelis-Menten-like 
expressions of the electron, )(tNADHζ , and energy, )(tATPζ , availability that constrain reactions that use 
ATP, ADP, NADH or NAD as determined by iε  and )(tiη .  
Chemical reaction rates are often limited by kinetics, so the thermodynamic force is often ignored because 
it is usually close to unity. However, as the reaction approaches equilibrium, )(cTF  approaches zero and 
constrains the net reaction rate no matter how favorable the reaction kinetics. It can be shown [16, 64] that 
the thermodynamic force is related to the Gibbs free energy of the reaction, )(†

ic rG∆ , as follows, 








 ∆
−=

i

icT
i RT

rG
F

χ
)(

exp1)(
†

c  for 0)(† ≤∆ ic rG , (9) 

where R is the gas constant, T is temperature (ºK)  χi is the average stoichiometric number for net reaction 
i [16, 140]. The thermodynamic force is an important aspect of our model, since altering energy coupling, 

)(tiη , allows the model to select from high-power, low-efficiency to low-power, high-efficiency modes. 
Because of the complexity of community metabolic networks, χi are treated as tunable parameters. 
Reactions )(5 tr  and )(6 tr  represent biological structure synthesis and degradation, respectively. 
However, which of the seven biological structures to produce or degrade at time t is not specified. 
Consequently, we introduce an additional control variable, )(tiσ , that specifies the partitioning of 
biological structure synthesis (analogous to transcription + translation) (Fig. 8). Degradation of biological 
structure is nonspecific and only depends on the relative concentration of iS  to total biological structure, 

TS , and the concentration of 6S . Since degradation of biological structure in ecosystems is largely the 
result of grazing by higher trophic levels, the non specificity of degradation is closer to how natural food 
webs operate.  In addition, biological structure is not perfectly 
degraded to building block materials (i.e., CH2O and NH4

+), but 
produces some detrital carbon (dC) and nitrogen (dN) (Fig. 7), as 
specified by the assimilation parameters aCf  and aNf , respectively 
(Table 1).  Breakdown of detrital C and N is controlled by reactions 

)(7 tr  and )(8 tr , but only one biological structure, 7S , catalyzes both 
reactions. 
Based on the metabolic network and reaction rates, a mass balance 
model can be constructed for the state variables, which represent the 
concentrations and partial pressures of chemical species, )(tc , 
biological structures, )(tS , as well as the system’s redox and energy 
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Fig. 8.  Illustration of how partition 
function ( iσ ) controls synthesis of 
biological structures. 
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states ( NADHζ , ATPζ ). In the methanotroph example )(tc include: [CH4], [CH2O], [O2], [CO2], [NH4
+], 

[NO3
-], [dC], [dN], pCH4, pO2 and pCO2,. The general form of the state model is given by, 

)),(),(),(),(()](),(),([ ttttt
dt

tttd
A

T

uqrrfc
=

ζS   (10) 

where )(tr  is the vector of reaction rates given by (7), )(tAr  is a vector of abiotic reaction rates, )(tq  is a 
vector of external sources, such as methane feed, and )(tu  is the vector of the two control functions: 

Tttt )](),([)( σηu = . Consequently, once )(tu  is specified, (10) can be solved for )(and)(),( ttt ζSc . 
The control variables, Ttt )](),([ ση , are determined by formulating and solving an interval optimization 
problem in which average entropy production rate, 

j
dtdS , is maximized over a specified interval of 

time, tδ . Entropy production is given by the negative of a reaction rate times the Gibbs free energy of the 
reaction divided by temperature, summed over all reactions [35 pp. 131-141], which is readily calculated. 
The general form of the optimal control problem is as follows: 
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To obtain a solution over a specified time domain, ],[ 0 ftt , (11) is solved repetitively over a sufficient 
number of intervals, ],[ tjj tt δ+ , to cover the entire domain.   There are several ways of solving (11), 
including linear programming following linearization at time, t [137, 138]. However, we have recently 
implemented an interval optimization method using SNOPT [43] that solves the nonlinear programming 
problem over the interval, tδ  via sequential quadratic programming coupled with block implicit methods 
to solve the associated differential equations (10) [19].  In the current implementation the optimal 
interval, tδ , is subdivided into ng grid points, and the control functions Ttt )](),([ ση  are discretized over 
the interval as linear piecewise continuous functions. The length of the optimization interval, tδ , is an 
interesting aspect of the model that relates to hypothesis H3, as it reflects the characteristic time scale of 
environmental variability that a living system has evolved to cope with over a given spatial scale [92].  
We expect that microbial systems can be described by short optimal intervals (~days), while in forest 
ecosystems tδ  would be at least the length of the four seasons (~year). It is also possible to cast the 
problem as a type of infinite horizon  [22] or receding horizon [59] optimal control problem, which we 
plan to investigate. Figures 9 and 10 illustrate a solution to (11) for our methanotrophic microcosms at 
zero dilution rate using a 8 d optimization interval.   
7.2 Model Comparison with Experiments  During all three experiments, we will extensively characterize 
the chemostats so that we can compare model output to observations.  Changes in chemical compositions 
will also allow us to determine overall reaction rates and consequently entropy production rate in all 
experiments, which will also be compared to model predictions.  The primary model outputs (see Figs. 9 
and 10) are 1) concentration and pressures of nutrients and gasses, 2) concentration of biological 
structures, 3) metabolic network reaction rates (Fig. 7 and Eq. 7), 4) current metabolic expression ( iσ  
partition coefficients) and 5) reaction efficiencies ( iη  variables). 
During the first phase of Experiment 1, model parameters will be calibrated based on experimental 
observations.  The perturbation experiments will then test the models ability to capture changes in 
community structure and biogeochemistry that will occur in the final phase of Exp. 1, without model 
recalibration.  We will compare our MEP-based OMEN model to a standard compartment model (e.g., 
Box 1 above), which will be similarly calibrated.  A model based on fundamental principles, such as 
MEP, should outperform an empirically-based model under perturbations which neither model has been 
calibrated for. 
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Fig. 10. (a) Biological structure partitioning and (b) reaction energy coupling 
control variables. Note, σ plotted for t = 60 to 100 d. 

Model parameters requiring 
calibration include ii χν , , and 

jiK ,  in (7), (9) and (8), 
respectively.  Data from 
Experiment 1 will be use to 
calibrate model parameters 
using data assimilation 
techniques we have developed 
[134].  The 454 tag sequences 
will be used to estimate OTUs 

and species richness, and queried against a reference database to extract information about taxonomic 
identity where possible.  This information along with pmoA activity and total protein will be related to 
predictions of biological structure allocations, )(tiS . 
8. Broader Impacts, Education and Postdoctoral Student Mentoring 
We have proposed that biological systems evolve towards a state of maximum entropy production as 
constrained by resources, biophysicochemistry and evolved useful information. While we have chosen 
microbial systems to test this theory, it applies across a broad range of biological organization and has 
many implications.  Our use of information [2] to distinguish biotic from abiotic processes allows 
predictions on invasive species and introduces the importance of timescales.  In order for an exotic 
species to be successful, it must cause entropy production (EP) to increase over the pre-invasion EP at 
some timescale. If an exotic flourishes by oxidizing existing biological structure, then EP will spike, 
followed by a crash in a steepest decent manner that is analogous to a forest fire. Such an exotic will not 
be persistent, because the original system had greater EP over longer timescales. However, if the exotic 
increases averaged EP over that of the original system, then it is likely to be persistent and difficult to 
eradicate.  It is also clear that useful information [2], not Shannon information, should be the basis for 
assessing how biodiversity relates to ecosystem function, because a random collection of organisms, 
which would have a high Shannon index, is unlikely to be complementary and exhibit high EP.  
The MEP principle as described in this proposal provides a definitive direction to evolution, but allows–
requires–a multitude of pathways. The MEPP also has interesting connections to the metabolic theory of 
ecology (MTE) [146].  Since MTE (or similar theories [3]) shows that respiration scales to the 3/4 power 
of body mass, a kg of bacteria has a much higher respiration than a kg of whale, so why would large 
organisms evolve, as they appear to waste resources (consider ν in Eq. (7))? One possibility is that they 
provide stability, as they act as a means of internal energy storage that is necessary to maintain EP during 
external perturbations.  While larger organisms often perish during perturbations, their biomass provides 
energy to maintain hierarchical structure and EP in the system over the perturbation, which may explain 
why biomass specific respiration decreases with increases with ecosystem maturity [93]. The MEPP 
connects to society as well, as the human planetary dominance is solely a result of our ability to dissipate 
the tiny amounts of energy that were stored, not dissipated, during transient events in Earth's history, such 
as during the Carboniferous period.  Under MEPP, natural systems will never conserve energy, but excel 
at recycling resources if they limit entropy production. Clearly, if MEPP underlies the organization of 
biological systems, it will have wide spread application.  
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Fig. 9. Concentration of state variables (a), biological structures (b), NADH and ATP storage, and entropy 
production rate with eight day entropy production averaging. 
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To facilitate application of MEP theory across scientific fields and to introduce the concept to non 
scientists, we plan to dedicate 25% of the half-time RA II to the development of a MEP web site.  All 
computational models developed during the project will be distributed, with documentation, on the web 
site, as well as all chemostat data and general advancements and applications of MEPP to biology. All 
sequence data will be submitted to NCBI and made available at our Visualization and Analysis of 
Microbial Population Structures (VAMPS) website (http://vamps.mbl.edu), which will be cross linked to 
the MEP web site.   The other function of the MEP web site will be educational outreach to K-12 and 
higher.  To provide feedback on the usefulness of the educational content developed, we will seek input 
from the PIE-LTER schoolyard program participants, as one of us (Vallino) is a CO-PI on the PIE 
project.  We will use Winogradsky columns for in-class discussion and participation, as these systems 
nicely illustrate the complexity of microbial processes. 
This project will also allow us to enhance our teaching in the Semester in Environmental Science (SES) 
undergraduate program (http://ecosystems.mbl.edu/SES/). The SES program has a strong history of 
drawing underrepresented groups in science, as classes have been on average 84% women and several 
minority colleges and universities belong to the SES consortium.  Starting in 2006 we began the URGES 
(Under-Represented Groups in Environmental Science) Program, which supports two minority students 
together with a faculty member on sabbatical leave to participate jointly in SES. The URGES program is 
intended to allow faculty members from minority colleges and universities to augment their curriculum at 
their home institutions based on the SES program.  Both PIs currently co-teach a laboratory/lecture course 
on microbial methods in ecology as part of SES, and we will use the chemostat experiments as a model 
system in our methods course as well as introduce new methods based on our research. This project 
would also allow us to bring molecular techniques along with our chemostat experiments to the 
independent research projects that all SES students conduct during the last five weeks of the program.   
8.1 Mentoring of Postdoctoral Student  This project will support one postdoctoral student for the 
duration of the project and will be co-advised by both PIs.  The postdoc will have a unique opportunity to 
engage scientists from both the Ecosystems Center and the Bay Paul Center for Comparative Molecular 
Biology and Evolution, which we will facilitate. The postdoc will actively be involved in the development 
of proposals, and will be allowed to gain teaching experience via our SES Methods course.  While it is 
unlikely we will find a student with expertise in both molecular biology and computational 
thermodynamic modeling, the student will gain such experience.  Of course the student will be required to 
present results at professional meetings and take the lead in manuscript writing. 
9. Results of Prior NSF Support. 
LTER-Plum Island Sound Comparative Ecosystems Study. OCE–9726921, 8/98-7/04: $4,130,000 
and OCE-0423565 8/04-7/09: $4,446,385. PI’s: Hopkinson, Giblin, Vallino, Hobbie, Peterson, Deegan, 
Morris, Vörösmarty, Buchsbaum. During the two projects, we have designed and implemented a 
comprehensive, long-term study of a major, coupled, land-estuarine system in the Acadian biogeographic 
province in eastern New England.  The PIE LTER seeks to develop a predictive understanding of the 
long-term dynamics of watershed and estuarine ecosystems at the land-sea interface and to apply this 
knowledge to the wise management and development of policy to protect the natural resources of the 
coastal zone. The project has resulted in 175 peer-reviewed publications and 20 theses or dissertations 
since funding began in 1998. Research at the site has involved over 65 individuals from over a dozen 
institutions. Vallino leads the modeling effort for the PIE-LTER project and has contributed 16 
publications [25, 28, 39, 42, 54-56, 60, 127, 134-138, 147, 148].  Broader Impacts – PIE LTER has 
developed a substantial education and outreach program.  Our education program consists of Schoolyard, 
Undergraduate, Graduate and Post-Graduate components. Our schoolyard program alone involves about 
1500 students and 42 teachers in the present school year.  Our strategies at the undergraduate level 
include summer research internships (4-7/yr), developing new, LTER-based curriculum, undergraduate 
research projects and senior theses, guest lectures and LTER sponsored field trips, and research 
experiences/collaborations for college faculty. Graduate students from Clark University, UNH and USC 
have been active LTER participants. We have also hosted several foreign graduate students: 2 Denmark, 1 
Portugal. 
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