Geochem-Geobio Products


Determining how microbial communities organize and function at the ecosystem level is essential to understanding and predicting how they will respond to environmental change. Mathematical models can be used to describe these communities, but properly representing all the biological interactions in extremely diverse natural microbial ecosystems in a mathematical model is challenging. We examine a complementary approach based on the maximum entropy production (MEP) principle, which proposes that systems with many degrees of freedom will likely organize to maximize the rate of free energy dissipation. In this study, we develop an MEP model to describe biogeochemistry observed in Siders Pond, a phosphate limited meromictic system located in Falmouth, MA that exhibits steep chemical gradients due to density-driven stratification that supports anaerobic photosynthesis as well as microbial communities that catalyze redox cycles involving O, N, S, Fe, and Mn. The MEP model uses a metabolic network to represent microbial redox reactions, where biomass allocation and reaction rates are determined by solving an optimization problem that maximizes entropy production over time, and a 1D vertical profile constrained by an advection-dispersion-reaction model. We introduce a new approach for modeling phototrophy and explicitly represent oxygenic photoautotrophs, photoheterotrophs and anoxygenic photoautotrophs. The metabolic network also includes reactions for aerobic organoheterotrophic bacteria, sulfate reducing bacteria, sulfide oxidizing bacteria and aerobic and anaerobic grazers. Model results were compared to observations of biogeochemical constituents collected over a 24 h period at 8 depths at a single 15 m deep station in Siders Pond. Maximizing entropy production over long (3 day) intervals produced results more similar to field observations than short (0.25 day) interval optimizations, which support the importance of temporal strategies for maximizing entropy production over time. Furthermore, we found that entropy production must be maximized locally instead of globally where energy potentials are degraded quickly by abiotic processes, such as light absorption by water. This combination of field observations and modeling results indicate that natural microbial systems can be modeled by using the maximum entropy production principle applied over time and space using many fewer parameters than conventional models.

Nearly 100 years ago, Alfred Lotka published two short but insightful papers describing how ecosystems may organize. Principally, Lotka argued that ecosystems will grow in size and that their cycles will spin faster via predation and nutrient recycling so as to capture all available energy, and that evolution and natural selection are the mechanisms by which this occurs and progresses. Lotka's ideas have often been associated with the maximum power principle, but they are more consistent with recent developments in nonequilibrium thermodynamics, which assert that complex systems will organize toward maximum entropy production (MEP). In this review, we explore Lotka's hypothesis within the context of the MEP principle, as well as how this principle can be used to improve marine biogeochemistry models. We need to develop the equivalent of a climate model, as opposed to a weather model, to understand marine biogeochemistry on longer timescales, and adoption of the MEP principle can help create such models.

Many attempts have been made to develop a general principle governing how systems develop and organize in ecology. We reviewed the historical developments that led to the conceptualization of several goal-oriented principles in ecosystem ecology. We focused on two prominent principles—the maximum power principle (MPP) and the maximum entropy production principle (MEPP)—and the literature that applies to both. Although these principles have conceptual overlap, we found considerable differences in their historical development, the disciplines that apply these principles, and their adoption in the literature. These principles were more similar than dissimilar, and the maximization of power in ecosystems occurs with maximum entropy production. These principles have great potential to explain how systems develop, organize, and function, but there are no widely agreed-on theoretical derivations for the MEPP and MPP, hindering their broader use in ecological research. We end with recommendations for how ecosystems-level studies may better use these principles.